82 research outputs found
Spatial-temporal variation in Greenland shark (Somniosus microcephalus) bycatch in the NAFO Regulatory Area
Spatial and temporal variation in Greenland shark (Somniosus microcephalus) bycatch occurrence was investigated using At-Sea Fisheries Observer data and MaxEnt, a maximum entropy species distribution model. Within the Northwest Atlantic Fisheries Organization Regulatory Area (NRA), the Flemish Pass, the slopes of the Flemish cap, and the shelf edge of Divisions 3NO contained areas of suitable habitat where Greenland shark bycatch is expected to occur. However, it should be noted that there are major areas of Greenland shark bycatch outside the NRA, in the Canadian and Greenland Exclusive Economic Zones (EEZ).En prens
Kernel Density Surface Modelling as a Means to Identify Significant Concentrations of Vulnerable Marine Ecosystem Indicators
The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME) from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO) produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE) to research vessel trawl survey data from inside the fishing footprint
of the Northwest Atlantic Fisheries Organization (NAFO) Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from
encircling successive biomass categories on the KDE surface to identify ‘‘significant concentrations’’ of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores), and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here and elsewhere.Versión del editor4,411
Recommended from our members
Cosmogenic neutron production at the Sudbury Neutrino Observatory
Neutrons produced in nuclear interactions initiated by cosmic-ray muons present an irreducible background to many rare-event searches, even in detectors located deep underground. Models for the production of these neutrons have been tested against previous experimental data, but the extrapolation to deeper sites is not well understood. Here we report results from an analysis of cosmogenically produced neutrons at the Sudbury Neutrino Observatory. A specific set of observables are presented, which can be used to benchmark the validity of geant4 physics models. In addition, the cosmogenic neutron yield, in units of 10-4 cm2/(g·μ), is measured to be 7.28±0.09(stat)-1.12+1.59(syst) in pure heavy water and 7.30±0.07(stat)-1.02+1.40(syst) in NaCl-loaded heavy water. These results provide unique insights into this potential background source for experiments at SNOLAB
Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory
We report results from a combined analysis of solar neutrino data from all
phases of the Sudbury Neutrino Observatory. By exploiting particle
identification information obtained from the proportional counters installed
during the third phase, this analysis improved background rejection in that
phase of the experiment. The combined analysis resulted in a total flux of
active neutrino flavors from 8B decays in the Sun of (5.25 \pm
0.16(stat.)+0.11-0.13(syst.))\times10^6 cm^{-2}s^{-1}. A two-flavor neutrino
oscillation analysis yielded \Deltam^2_{21} = (5.6^{+1.9}_{-1.4})\times10^{-5}
eV^2 and tan^2{\theta}_{12}= 0.427^{+0.033}_{-0.029}. A three-flavor neutrino
oscillation analysis combining this result with results of all other solar
neutrino experiments and the KamLAND experiment yielded \Deltam^2_{21} =
(7.41^{+0.21}_{-0.19})\times10^{-5} eV^2, tan^2{\theta}_{12} =
0.446^{+0.030}_{-0.029}, and sin^2{\theta}_{13} =
(2.5^{+1.8}_{-1.5})\times10^{-2}. This implied an upper bound of
sin^2{\theta}_{13} < 0.053 at the 95% confidence level (C.L.)
Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity
The Sudbury Neutrino Observatory (SNO) has precisely determined the total
active (nu_x) 8B solar neutrino flux without assumptions about the energy
dependence of the nu_e survival probability. The measurements were made with
dissolved NaCl in the heavy water to enhance the sensitivity and signature for
neutral-current interactions. The flux is found to be 5.21 +/- 0.27 (stat) +/-
0.38 (syst) x10^6 cm^{-2}s^{-1}, in agreement with previous measurements and
standard solar models. A global analysis of these and other solar and reactor
neutrino results yields Delta m^{2} = 7.1^{+1.2}_{-0.6}x10^{-5} ev^2 and theta
= 32.5^{+2.4}_{-2.3} degrees. Maximal mixing is rejected at the equivalent of
5.4 standard deviations.Comment: Submitted to Phys. Rev. Let
Independent measurement of the total active B8 solar neutrino flux using an array of He3 proportional counters at the Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (νx) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54-0.31+0.33(stat)-0.34+0.36(syst)×106  cm-2 s-1, in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Δm2=7.59-0.21+0.19×10-5  eV2 and θ=34.4-1.2+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO’s previous results
Electron Antineutrino Search at the Sudbury Neutrino Observatory
Upper limits on the \nuebar flux at the Sudbury Neutrino Observatory have
been set based on the \nuebar charged-current reaction on deuterium. The
reaction produces a positron and two neutrons in coincidence. This distinctive
signature allows a search with very low background for \nuebar's from the Sun
and other potential sources. Both differential and integral limits on the
\nuebar flux have been placed in the energy range from 4 -- 14.8 MeV. For an
energy-independent \nu_e --> \nuebar conversion mechanism, the integral limit
on the flux of solar \nuebar's in the energy range from 4 -- 14.8 MeV is found
to be \Phi_\nuebar <= 3.4 x 10^4 cm^{-2} s^{-1} (90% C.L.), which corresponds
to 0.81% of the standard solar model 8B \nu_e flux of 5.05 x 10^6 cm^{-2}
s^{-1}, and is consistent with the more sensitive limit from KamLAND in the 8.3
-- 14.8 MeV range of 3.7 x 10^2 cm^{-2} s^{-1} (90% C.L.). In the energy range
from 4 -- 8 MeV, a search for \nuebar's is conducted using coincidences in
which only the two neutrons are detected. Assuming a \nuebar spectrum for the
neutron induced fission of naturally occurring elements, a flux limit of
Phi_\nuebar <= 2.0 x 10^6 cm^{-2} s^{-1}(90% C.L.) is obtained.Comment: submitted to Phys. Rev.
Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory
Data from the Sudbury Neutrino Observatory have been used to constrain the
lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The
analysis was based on a search for gamma-rays from the de-excitation of the
residual nucleus that would result from the disappearance of either a proton or
neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90%
confidence for either neutron or proton decay modes. This is about an order of
magnitude more stringent than previous constraints on invisible proton decay
modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of
2) Submitted to Physical Review Letter
Measurement of the rate of nu_e + d --> p + p + e^- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory
Solar neutrinos from the decay of B have been detected at the Sudbury
Neutrino Observatory (SNO) via the charged current (CC) reaction on deuterium
and by the elastic scattering (ES) of electrons. The CC reaction is sensitive
exclusively to nu_e's, while the ES reaction also has a small sensitivity to
nu_mu's and nu_tau's. The flux of nu_e's from ^8B decay measured by the CC
reaction rate is
\phi^CC(nu_e) = 1.75 +/- 0.07 (stat)+0.12/-0.11 (sys.) +/- 0.05(theor) x 10^6
/cm^2 s.
Assuming no flavor transformation, the flux inferred from the ES reaction
rate is
\phi^ES(nu_x) = 2.39+/-0.34 (stat.)+0.16}/-0.14 (sys) x 10^6 /cm^2 s.
Comparison of \phi^CC(nu_e) to the Super-Kamiokande Collaboration's precision
value of \phi^ES(\nu_x) yields a 3.3 sigma difference, providing evidence that
there is a non-electron flavor active neutrino component in the solar flux. The
total flux of active ^8B neutrinos is thus determined to be 5.44 +/-0.99 x
10^6/cm^2 s, in close agreement with the predictions of solar models.Comment: 6 pages (LaTex), 3 figures, submitted to Phys. Rev. Letter
First Neutrino Observations from the Sudbury Neutrino Observatory
The first neutrino observations from the Sudbury Neutrino Observatory are
presented from preliminary analyses. Based on energy, direction and location,
the data in the region of interest appear to be dominated by 8B solar
neutrinos, detected by the charged current reaction on deuterium and elastic
scattering from electrons, with very little background. Measurements of
radioactive backgrounds indicate that the measurement of all active neutrino
types via the neutral current reaction on deuterium will be possible with small
systematic uncertainties. Quantitative results for the fluxes observed with
these reactions will be provided when further calibrations have been completed.Comment: Latex, 7 pages, 10 figures, Invited paper at Neutrino 2000
Conference, Sudbury, Canada, June 16-21, 2000 to be published in the
Proceeding
- …