594 research outputs found

    Real-time assembly of ribonucleoprotein complexes on nascent RNA transcripts.

    Get PDF
    Cellular protein-RNA complexes assemble on nascent transcripts, but methods to observe transcription and protein binding in real time and at physiological concentrations are not available. Here, we report a single-molecule approach based on zero-mode waveguides that simultaneously tracks transcription progress and the binding of ribosomal protein S15 to nascent RNA transcripts during early ribosome biogenesis. We observe stable binding of S15 to single RNAs immediately after transcription for the majority of the transcripts at 35 °C but for less than half at 20 °C. The remaining transcripts exhibit either rapid and transient binding or are unable to bind S15, likely due to RNA misfolding. Our work establishes the foundation for studying transcription and its coupled co-transcriptional processes, including RNA folding, ligand binding, and enzymatic activity such as in coupling of transcription to splicing, ribosome assembly or translation

    Cytotoxicity of seven recent dentine bonding agents on mouse 3T3 fibroblast cells

    Get PDF
    Today it is generally accepted that most bonding agents are cytotoxic. In this study the relative cyto-toxicity of seven recent dentine bonding agents on mouse 3T3 fibroblast cells were investigated. Materials and Methods. Near-confluent mouse 3T3 fibro- blast cells were exposed to Dulbecco Modified Eagle’s Medium containing extractions from the seven different bonding agents. The cell survival rate was then determined using the standard MTT assay. Results. The cell survival rate ranking is: iBond (94%) < Gbond (78%) < Xeno V (71%) < Adper Easy Bond (63%) < Xeno V+ (61%) < Adper Scotchbond SE (33%) < XP Bond (32%). Part A of Adper Scotchbond SE had a survival rate of 35% and part B 38%. These two parts did not differ significantly. Adper Scotchbond SE and XP Bond do not differ significantly. While Xeno V+, Xeno V and Adper Easy Bond do not differ. (p < 5%; Tukey-Kramer Multiple-Comparison Test). Conclusion. All of the tested adhesive bonding agents were cytotoxic with survival rate of 3T3 cells between 94% to 31%. Of the 7 bonding agents tested iBond was found to be only slightly toxic and by far the least toxic. The two bonding agents (XP Bond and Adper Scotchbond SE) containing UDMA plus TEGDMA plus HEMA plus camphorquinone were found to be the most toxic

    Insights into chitosan hydrogels on dentine bond strength and cytotoxicity

    Get PDF
    Contemporary dental adhesives show favorable im- mediate results in terms of bonding effectiveness. However, the durability of resin-dentin bonds is their major problem. Materials and Methods: Preparation of 3 chitosan-antioxidant hydrogels was achieved us- ing modified hydrogel preparation method. Their effect on the bond strength to dentine both short term (after 24 hours) and long term (after 6 months) were evaluated using shear bond strength measurements using Instron Universal Testing Mascine). The SEM was used to study the surface of the hydrogels. The cell survival rate (cytotoxicity) of the antioxidants re- sveratrol, β-carotene and propolis towards Balb/c 3T3 mouse fibroblast cells was also assessed using the standard MTT assay. Results: It was found that chi- tosan-H treated dentine gives significantly (p propolis (68%) > resveratrol (33%). Conclusion: the antioxidant-chitosan hydro- gels significantly improved bonding to dentine with or without phosphoric acid treatment. The pH of the growth medium had a high influence on the cell survival rate of Balb/c mouse 3T3 fibroblast cells. The release of the antioxidant β-carotene would not have an influence on the pulp cells. These materials might address the current perspectives for improving bond durability.DDF fund of the South African Dental Association; School of Dentistry and Oral Health, Griffith UniversityWeb of Scienc

    Insight into the Machinery and Applications for Understanding the Pathogen- Vector Interface

    Get PDF
    The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in- field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase

    Recent exposure to ultrafine particles in school children alters miR-222 expression in the extracellular fraction of saliva

    Get PDF
    Background: Ultrafine particles (< 100 nm) are ubiquitous present in the air and may contribute to adverse cardiovascular effects. Exposure to air pollutants can alter miRNA expression, which can affect downstream signaling pathways. miRNAs are present both in the intracellular and extracellular environment. In adults, miR-222 and miR-146a were identified as associated with particulate matter exposure. However, there is little evidence of molecular effects of ambient air pollution in children. This study examined whether exposure to fine and ultrafine particulate matter (PM) is associated with changes in the extracellular content of miR-222 and miR-146a of children. Methods: Saliva was collected from 80 children at two different time points, circa 11 weeks apart and stabilized for RNA preservation. The extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We regressed the extracellular miRNA expression against recent exposure to ultrafine and fine particles measured at the school site using mixed models, while accounting for sex, age, BMI, passive smoking, maternal education, hours of television use, time of the day and day of the week. Results: Exposure to ultrafine particles (UFP) at the school site was positively associated with miR-222 expression in the extracellular fraction in saliva. For each IQR increase in particles in the class room (+8504 particles/cm(3)) or playground (+ 28776 particles/cm(3)), miR-222 was, respectively 23.5 % (95 % CI: 3.5 %-41.1 %; p = 0.021) or 29.9 % (95 % CI: 10.6 %-49.1 %; p = 0.0027) higher. No associations were found between miR-146a and recent exposure to fine and ultrafine particles. Conclusions: Our results suggest a possible epigenetic mechanism via which cells respond rapidly to small particles, as exemplified by miR-222 changes in the extracellular fraction of saliva

    Practical guidelines on the application of migration modelling for the estimation of specific migration

    Get PDF
    The aim of this practical guidance document is to assist the users of the described diffusion models to predict conservative, upper bound specific migration values from plastic food contact materials for compliance purposes. Explanatory guidance tables and practical examples of migration modelling are provided. This document is an updated version of the report "Estimation of specific migration by generally recognised diffusion models in support of EU Directive 2002/72/EC" (Simoneau, 2010) concerning the current legal basis (Regulation (EU) No 10/2011) and the use of migration models for the estimation of specific migration from plastic multi-layers. This document represents the current validity of the models based on constant periodical evaluations of new experimental migration data performed by the Task Force on Migration Modelling chaired by the Directorate General Joint Research Centre of the European Commission on behalf of Directorate General Health and Consumers. The members of the Task Force are R. Brandsch, C. Dequatre, E.J. Hoekstra, P. Mercea, M.R. Milana, A. Schäfer, C. Simoneau, A. Störmer, X. Trier and O. Vitrac.JRC.I.1-Chemical Assessment and Testin

    Children’s screen time alters the expression of saliva extracellular miR-222 and miR-146a

    Get PDF
    An imbalance between energy uptake and energy expenditure is the most important reason for increasing trends in obesity starting from early in life. Extracellular miRNAs are expressed in all bodily fluids and their expression is influenced by a broad range of stimuli. We examined whether screen time, physical activity and BMI are associated with children's salivary extracellular miR-222 and miR-146a expression. In 80 children the extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We studied the association between children's salivary extracellular miRNA expression and screen time, physical activity and BMI using mixed models, while accounting for potential confounders. We found that higher screen time was positively associated with salivary extracellular miR-222 and miR-146a levels. On average, one hour more screen time use per week was associated with a 3.44% higher miR-222 (95% CI: 1.34 to 5.58; p = 0.002) and 1.84% higher miR-146a (95% CI: -0.04 to 3.75; p = 0.055) level in saliva. BMI and physical activity of the child were not significantly associated with either miR-222 or miR-146a. A sedentary behaviour, represented by screen time use in children, is associated with discernible changes in salivary expression of miR-146a and or miR-222. These miRNA targets may emerge attractive candidates to explore the role of these exposures in developmental processes of children's health
    • …
    corecore