73 research outputs found

    Classifying Chronic Lower Respiratory Disease Events in Epidemiologic Cohort Studies

    Get PDF
    Rationale: One in 12 adults has chronic obstructive pulmonary disease or asthma. Acute exacerbations of these chronic lower respiratory diseases (CLRDs) are a major cause of morbidity and mortality. Valid approaches to classifying cases and exacerbations in the general population are needed to facilitate prevention research

    Centrilobular emphysema and coronary artery calcification: mediation analysis in the SPIROMICS cohort

    Get PDF
    Abstract Background Chronic obstructive pulmonary disease (COPD) is associated with a two-to-five fold increase in the risk of coronary artery disease independent of shared risk factors. This association is hypothesized to be mediated by systemic inflammation but this link has not been established. Methods We included 300 participants enrolled in the SPIROMICS cohort, 75 each of lifetime non-smokers, smokers without airflow obstruction, mild-moderate COPD, and severe-very severe COPD. We quantified emphysema and airway disease on computed tomography, characterized visual emphysema subtypes (centrilobular and paraseptal) and airway disease, and used the Weston visual score to quantify coronary artery calcification (CAC). We used the Sobel test to determine whether markers of systemic inflammation mediated a link between spirometric and radiographic features of COPD and CAC. Results FEV1/FVC but not quantitative emphysema or airway wall thickening was associated with CAC (p = 0.036), after adjustment for demographics, diabetes mellitus, hypertension, statin use, and CT scanner type. To explain this discordance, we examined visual subtypes of emphysema and airway disease, and found that centrilobular emphysema but not paraseptal emphysema or bronchial thickening was independently associated with CAC (p = 0.019). MMP3, VCAM1, CXCL5 and CXCL9 mediated 8, 8, 7 and 16% of the association between FEV1/FVC and CAC, respectively. Similar biomarkers partially mediated the association between centrilobular emphysema and CAC. Conclusions The association between airflow obstruction and coronary calcification is driven primarily by the centrilobular subtype of emphysema, and is linked through bioactive molecules implicated in the pathogenesis of atherosclerosis. Trial Registration ClinicalTrials.gov: Identifier: NCT01969344 .https://deepblue.lib.umich.edu/bitstream/2027.42/146749/1/12931_2018_Article_946.pd

    A genome-wide association study in Hispanics/Latinos identifies novel signals for lung function: the Hispanic Community Health Study/Study of Latinos

    Get PDF
    Rationale:: Lung function and chronic obstructive pulmonary disease (COPD) are heritable traits. Genome-wide association studies (GWAS) have identified numerous pulmonary function and COPD loci, primarily in cohorts of European ancestry. Objectives: Perform a GWAS of COPD-phenotypes in Hispanic/Latino populations to identify loci not previously detected in European populations. Methods: :GWAS of lung function and COPD in Hispanic/Latino participants from a population-based cohort. We performed replication studies of novel loci in independent studies. Measurements and Main Results: Among 11,822 Hispanic/Latino participants, we identified eight novel signals; three replicated in independent populations of European Ancestry. A novel locus for forced expiratory volume in one second (FEV1) in ZSWIM7 (rs4791658; p=4.99×10-9) replicated. A rare variant (MAF=0.002) in HAL (rs145174011) was associated with FEV1 to forced vital capacity (FEV1/FVC) (p=9.59×10-9) in a region previously identified for COPD-related phenotypes; it remained significant in conditional analyses but did not replicate. Admixture mapping identified a novel region, with a variant in AGMO (rs41331850), associated with Amerindian ancestry and FEV1, which replicated. A novel locus for FEV1 identified among ever smokers (rs291231; p=1.92×10-8) approached statistical significance for replication in admixed populations of African ancestry and a novel SNP for COPD in PDZD2 (rs7709630; p=1.56×10-8) regionally replicated. Additionally, loci previously identified for lung function in European samples were associated in Hispanic/Latino participants in HCHS/SOL at the genome-wide significance level. Conclusions: We identified novel signals for lung function and COPD in a Hispanic/Latino cohort. Including admixed populations when performing genetic studies may identify variants contributing togenetic etiologies of COPD

    Rare and low-frequency exonic variants and gene-by-smoking interactions in pulmonary function

    Get PDF
    Genome-wide association studies have identified numerous common genetic variants associated with spirometric measures of pulmonary function, including forced expiratory volume in one second (FEV1), forced vital capacity, and their ratio. However, variants with lower minor allele frequencies are less explored. We conducted a large-scale gene-smoking interaction meta-analysis on exonic rare and low-frequency variants involving 44,429 individuals of European ancestry in the discovery stage and sought replication in the UK BiLEVE study with 45,133 European ancestry samples and UK Biobank study with 59,478 samples. We leveraged data on cigarette smoking, the major environmental risk factor for reduced lung function, by testing gene-by-smoking interaction effects only and simultaneously testing the genetic main effects and interaction effects. The most statistically significant signal that replicated was a previously reported low-frequency signal in GPR126, distinct from common variant associations in this gene. Although only nominal replication was obtained for a top rare variant signal rs142935352 in one of the two studies, interaction and joint tests for current smoking and PDE3B were s

    Omega-3 fatty acids and genome-wide interaction analyses reveal DPP10-pulmonary function association

    Get PDF
    Rationale: Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have anti-inflammatory properties that could benefit adults with comprised pulmonary health. Objective: To investigate n-3 PUFA associations with spirometric measures of pulmonary function tests (PFTs) and determine underlying genetic susceptibility. Methods: Associations of n-3 PUFA biomarkers (a-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid [DPA], and docosahexaenoic acid [DHA]) were evaluated with PFTs (FEV1, FVC, and FEV1/FVC) in meta-analyses across seven cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (N=16,134 of European or African ancestry). PFT-associated n-3 PUFAs were carried forward to genome-wide interaction analyses in the four largest cohorts (N=11,962) and replicated in one cohort (N=1,687). Cohort-specific results were combined using joint 2 degree-of-freedom (2df) meta-analyses of SNPassociations and their interactions with n-3PUFAs. Results: DPA and DHA were positively associated with FEV1 and FVC (P < 0.025), with evidence for effect modification by smoking and by sex. Genome-wide analyses identified a novel association of rs11693320-an intronic DPP10 SNP-with FVC when incorporating an interaction with DHA, and the finding was replicated (P-2df = 9.4 x 10(-9) across discovery and replication cohorts). The rs11693320-A allele (frequency, similar to 80%) was associated with lower FVC (P-SNP = 2.1 x 10(-9); beta(SNP) = 2161.0 ml), and the association was attenuated by higher DHA levels (P-SNPxDHA interaction = 2.1x10(-7); beta(SNPxDHA interaction) = 36.2 ml). Conclusions: We corroborated beneficial effects of n-3 PUFAs on pulmonary function. By modeling genome-wide n-3 PUFA interactions, we identified a novel DPP10 SNP association with FVC that was not detectable in much larger studies ignoring this interaction

    Meta-analysis across Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium provides evidence for an association of serum vitamin D with pulmonary function

    Get PDF
    The role that vitamin D plays in pulmonary function remains uncertain. Epidemiological studies reported mixed findings for serum 25-hydroxyvitamin D (25(OH)D)-pulmonary function association. We conducted the largest cross-sectional meta-analysis of the 25(OH)D-pulmonary function association to date, based on nine European ancestry (EA) cohorts (n 22 838) and five African ancestry (AA) cohorts (n 4290) in the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Data were analysed using linear models by cohort and ancestry. Effect modification by smoking status (current/former/never) was tested. Results were combined using fixed-effects meta-analysis. Mean serum 25(OH)D was 68 (SD 29) nmol/l for EA and 49 (SD 21) nmol/l for AA. For each 1 nmol/l higher 25(OH)D, forced expiratory volume in the 1st second (FEV1) was higher by 1.1 ml in EA (95 % CI 0.9, 1.3; P< 0.0001) and 1.8 ml (95 % CI 1.1, 2.5; P< 0.0001) in AA (P-race (difference) = 0.06), and forced vital capacity (FVC) was higher by 1.3 ml in EA (95 % CI 1.0, 1.6; P <0.0001) and 1.5 ml (95 % CI 0.8, 2.3; P= 0.0001) in AA (P-race difference = 0.56). Among EA, the 25(OH)D-FVC association was stronger in smokers: per 1 nmol/l higher 25(OH) D, FVC was higher by 1.7 ml (95 % CI 1.1, 2.3) for current smokers and 1.7 ml (95 % CI 1.2, 2.1) for former smokers, compared with 0.8 ml (95 % CI 0.4, 1.2) for never smokers. In summary, the 25(OH)D associations with FEV1 and FVC were positive in both ancestries. In EA, a stronger association was observed for smokers compared with never smokers, which supports the importance of vitamin D in vulnerable populations

    Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD

    Get PDF
    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group

    Genetic diversity fuels gene discovery for tobacco and alcohol use

    Get PDF
    Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury(1-4). These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries(5). Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.Peer reviewe
    • …
    corecore