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Abstract
The role that vitamin D plays in pulmonary function remains uncertain. Epidemiological studies reported mixed findings for serum
25-hydroxyvitamin D (25(OH)D)–pulmonary function association. We conducted the largest cross-sectional meta-analysis of the 25(OH)D–

pulmonary function association to date, based on nine European ancestry (EA) cohorts (n 22 838) and five African ancestry (AA) cohorts
(n 4290) in the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Data were analysed using linear models by
cohort and ancestry. Effect modification by smoking status (current/former/never) was tested. Results were combined using fixed-effects
meta-analysis. Mean serum 25(OH)D was 68 (SD 29) nmol/l for EA and 49 (SD 21) nmol/l for AA. For each 1 nmol/l higher 25(OH)D, forced
expiratory volume in the 1st second (FEV1) was higher by 1·1ml in EA (95% CI 0·9, 1·3; P< 0·0001) and 1·8ml (95% CI 1·1, 2·5; P< 0·0001)
in AA (Prace difference= 0·06), and forced vital capacity (FVC) was higher by 1·3ml in EA (95% CI 1·0, 1·6; P< 0·0001) and 1·5ml (95% CI 0·8,
2·3; P= 0·0001) in AA (Prace difference= 0·56). Among EA, the 25(OH)D–FVC association was stronger in smokers: per 1 nmol/l higher 25(OH)
D, FVC was higher by 1·7ml (95% CI 1·1, 2·3) for current smokers and 1·7ml (95% CI 1·2, 2·1) for former smokers, compared with 0·8ml
(95% CI 0·4, 1·2) for never smokers. In summary, the 25(OH)D associations with FEV1 and FVC were positive in both ancestries. In EA, a
stronger association was observed for smokers compared with never smokers, which supports the importance of vitamin D in vulnerable
populations.

Key words: Vitamin D: Forced expiratory volume: Vital capacity: Respiratory function tests: Smoking: Whites: African Americans

Chronic obstructive pulmonary disease (COPD), the third leading
cause of mortality in the USA(1) and among the top ten leading
causes of total years of life lost in the world(2), is characterised by
progressive airway obstruction. Pulmonary function tests (PFT), as
performed by spirometry, are used to quantify pulmonary function
parameters including forced expiratory volume in the 1st second
(FEV1) and forced vital capacity (FVC). Pulmonary function
increases throughout childhood, plateaus in the 20s, and thereafter
adults experience an age-related decline(3). The majority of COPD
cases (85%) are related to smoking(4), which alters the trajectory in
pulmonary function, by hindering growth, reducing peak function
and accelerating age-related decline(5).
Vitamin D is proposed to have protective effects in the

lungs via gene regulation(6). In vitro studies found that

1,25-dihydroxyvitamin D (1,25-(OH)2D), the active vitamin D
metabolite, induced antimicrobial peptides for host defence in
the lung and modulated airway remodelling(7). In humans, 25-
hydroxyvitamin D (25(OH)D) is the major vitamin D metabolite
in serum, most of which forms a complex with vitamin D
binding protein (DBP) (approximately 85–90% is DBP-
bound)(8), and then is metabolised to 1,25-(OH)2D, the active
steroid hormone form(8,9). Total 25(OH)D is the commonly
used biomarker of vitamin D status, and it is preferred to other
vitamin D metabolites, such as non-DBP-bound 25(OH)D and
1,25-(OH)2D, given that it is a comprehensive indicator for
vitamin D stores, has a longer half-life (approximately 3 weeks)
and is less affected by Ca(10,11). On average, African ancestry
(AA) populations have lower serum 25(OH)D concentrations,
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due to multiple factors including genetics and skin pigmenta-
tion(7), but evidence exists that AA populations have higher
1,25-(OH)2D levels and greater bone mineral density compared
with European ancestry (EA) populations(12).
Previous observational cross-sectional studies of the vitamin D–

pulmonary function association in the general population reported
mixed findings. Most of these studies reported a positive asso-
ciation between 25(OH)D and pulmonary function(13–19), although
some reported a null or inverse association(20–22), and two others
reported a positive association under certain conditions, such as
only in male current smokers(23) or only in overweight and obese
males(24). The largest previous cross-sectional study, which inclu-
ded two Danish cohorts (total 18 507), reported positive asso-
ciations of 25(OH)D with pulmonary function(16). Only one prior
cross-sectional study investigated serum 25(OH)D and pulmon-
ary function in an ancestry group other than European, and it
confirmed similar positive associations in the 3957 AA partici-
pants studied(13).
The current study investigated the hypothesis that serum

25(OH)D level is positively associated with pulmonary func-
tion. We leveraged the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) Consortium to include
population-based data on serum 25(OH)D and pulmonary
function in a harmonised analysis. In addition, we compared
the association of serum 25(OH)D and pulmonary function
across EA and AA groups and investigated effect modification
by cigarette smoking.

Methods

Cohorts and participants

Nine prospective cohorts in the CHARGE Consortium were
included (Table 1). All cohorts had EA participants, and five of
the cohorts had AA participants. Only one cohort (Multi-Ethnic
Study of Atherosclerosis (MESA)) has participants with other
ancestries, and these other ancestries were not included in this
study. Among the nine cohorts, the Framingham Heart Study
(FHS) had two sub-cohorts analysed separately: the Offspring
and the Third-Generation (Gen3) cohorts. Our analysis pipeline
harmonised the outcome and exposure definitions, the units on
all variables and the statistical modelling. The same exclusion
criteria were applied to each cohort: missing PFT, unacceptable
PFT using the American Thoracic Society and European
Respiratory Society criteria for acceptability, missing serum
25(OH)D, serum 25(OH)D >374·4 nmol/l (or 150 ng/ml, lead-
ing to removal of a single outlier)(25) or missing on other
covariates (online Supplementary Table S1).

Outcome and exposure assessment

Pre-bronchodilator pulmonary function outcomes (FEV1, FVC
and FEV1/FVC), which have similar accuracy as post-
bronchodilator measures for long-term outcomes(26), were
measured in each cohort using standardised methods defined
by the American Thoracic Society/European Respiratory Society
criteria (online Supplementary Table S2). The methods used to
measure 25(OH)D varied by cohort (online Supplementary

Table S2). Three cohorts, including MESA, the Atherosclerosis
Risk In Communities (ARIC) study, and the Cardiovascular
Health Study (CHS), used the current reference method, liquid
chromatography in tandem with mass spectrometry (LC-MS/
MS); three cohorts, including FHS, the Coronary Artery Risk
Development in Young Adults (CARDIA) study, and the
Health, Aging, and Body Composition (HABC) study, used
radioimmunoassay (RIA); one cohort, the Age, Gene, Environ-
ment, Susceptibility Study − Reykjavik, Iceland (AGES), used
chemiluminescence immunoassay (CLIA); and one cohort (the
Rotterdam Study (RS)) used electro-CLIA. Only MESA calibrated
the serum 25(OH)D measurement against the standard refer-
ence material 972(27), which reflects the calendar time of the
measurements in the cohorts, most of which occurred before
the availability of the standard reference material (online Sup-
plementary Table S3). Measurements of the outcome and
exposure variables were planned for either the full cohort
(ARIC, CHS, FHS, HABC and RS) or a subset of the cohort if the
outcome or the exposure was only measured in an ancillary
study (AGES, CARDIA and MESA)(28–31) (online Supplementary
Table S1). Continuous variables were used for serum 25(OH)D
and pulmonary function to capture the association of 25(OH)D
on PFT across the broad distribution of ranges in the cohorts.

As shown in Table 1, among nine cohorts, four (AGES, CHS,
FHS-Offspring and FHS-Gen3) had a mean time difference of
<1 year in the PFT measurements and the preceding 25(OH)D
measurement, and the greatest mean time difference between
25(OH)D and PFT measurement was <5 years (MESA). Parti-
cipants in ARIC and HABC had blood drawn for serum 25(OH)D
after their PFT measure, but within 3 years.

Other covariates, including smoking status, pack-years
(number of packs of cigarettes smoked per d times the num-
ber of years smoked), height, weight and age, were measured
concurrently with pulmonary function, except for CHS, which
assessed covariates concurrent with the serum 25(OH)D mea-
sure, but within 1 year of the PFT measurement (online Sup-
plementary Table S3). All data collection and analysis was
approved by the Institutional Review Board at each cohort’s
respective institution. Spirometry measures are available on the
database of Genotypes and Phenotypes via accession numbers
as follows: ARIC (phs000280), CARDIA (phs000285), CHS
(phs000287), FHS (phs000007) and MESA (phs000209). Serum
vitamin D measures are also available at the same accession
numbers for CHS, FHS and MESA.

Statistical analysis in individual cohorts

All analyses were first conducted independently in each cohort,
stratified by ancestry, given the lower mean serum 25(OH)D
level in AA participants(7). For FEV1 and FEV1/FVC, models
were adjusted for smoking status, pack-years, height, height
squared, age, age squared, sex, season of blood draw and study
centre (if applicable); for FVC, the model was further adjusted
for weight. Residual outliers, identified using the studentised
residuals of the linear models (online Supplementary methods
for more details), were excluded from all models (about 0·3%
of the total sample size). The model was extended to test the
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interaction between 25(OH)D and smoking status (never
(reference group), former and current smokers).

Meta-analysis

We tested the association of serum 25(OH)D on each PFT
outcome among individuals in each ancestry group and each
cohort, separately, and then combined the effect estimates (also
referred to as two-stage meta-analysis(32)), using inverse var-
iance weighting and assuming fixed-effects, with heterogeneity
assessed via the I2 statistic(33). Random-effects meta-analysis
was performed as a sensitivity analysis if there was potential
heterogeneity (I2> 30%). The comparison of meta-analysed
coefficients of the 25(OH)D–PFT associations for the two
ancestry groups was conducted using a Z test(34). Meta-analysis
of the interaction terms of 25(OH)D with smoking status was
also performed (online Supplementary methods for more
details, online Supplementary Tables S4 and S5 for cohort-
specific findings and online Supplementary Table S6 for meta-
analysed results).
Meta-regression was conducted to explore the potential

causes of moderate heterogeneity in the meta-analysis of
25(OH)D on FEV1 and FVC in the EA cohorts. Modifiers were
tested individually in the meta-regression models to investigate
heterogeneity; modifiers included factors that could vary
between cohorts, such as proportion of ever, current and for-
mer smokers, mean 25(OH)D level, assay method for serum
25(OH)D, time between 25(OH)D and PFT measures, and
mean age of participants in each cohort. The two-sided type I
error was examined at 0·05 for all analyses. Meta-analysis and
meta-regression were conducted using the metafor package
(version 1.9-8) in R (version 3.2.3.; R Foundation for Statistical
Computing).
Regression coefficients (β) with their standard errors calcu-

lated within each cohort per 1 nmol/l 25(OH)D are presented in
the figures. In addition, to put the magnitude of the 25(OH)D–
PFT associations in terms relevant to public health, the meta-
analysed regression coefficients were multiplied by 10 nmol/l
25(OH)D, which is about half of the standard deviation of the
25(OH)D distribution.

Results

We studied 22 838 EA and 4290 AA participants. EA partici-
pants had higher FEV1, FVC and serum 25(OH)D than AA
participants in each cohort, whereas FEV1/FVC was similar
across ancestry groups (Table 1 and online Supplementary
Fig. S1). CARDIA and FHS-Gen3 were younger than the seven
other cohorts, with consequently lower pack-years smoked in
ever smokers. Across all cohorts, among EA participants, 17%
were current smokers and 40% were former smokers; among
AA participants, 22 % were current smokers and 30% were
former smokers. The mean serum 25(OH)D level was highest
among never smokers (70 (SD 30) nmol/l), followed by
former smokers (67 (SD 29) nmol/l) and current smokers
(64 (29) nmol/l) in EAs, whereas the trend was less obvious in
AA (49 (SD 21) nmol/l in current smokers, 50 (SD 21) nmol/l in

former smokers and 48 (SD 21) nmol/l in never smokers). The
mean of serum 25(OH)D for EA participants across nine
cohorts was 68 (SD 29) nmol/l and for AA participants across
five cohorts the mean was 49 (SD 21) nmol/l.

Fixed-effects meta-analysis (Fig. 1) revealed a consistently
positive association of serum 25(OH)D with the PFT outcomes,
FEV1 and FVC, in both ancestry groups. To put these findings
into context, a 10 nmol/l (approximately 0·5 SD) higher 25(OH)
D was associated with 11·1ml higher FEV1 in EA (P< 0·0001)
and 17·9ml higher FEV1 in AA (P< 0·0001). Similarly, for a
10 nmol/l higher 25(OH)D, FVC was higher by 12·9ml in EA
(P< 0·0001) and by 15·4ml in AA (P= 0·0001). The magnitudes
of the 25(OH)D–PFT associations did not differ significantly
between the two ancestry groups (P= 0·06 and P= 0·56 for
FEV1 and FVC, respectively). The association of serum 25(OH)D
with FEV1/FVC reached statistical significance only in EA
(P= 0·0013), and the magnitude was negligible; a 10 nmol/l
higher 25(OH)D was associated with a ratio being lower by
0·055% (online Supplementary Table S7 and Supplementary Fig.
S2 for ancestry- and cohort-specific findings).

In the main-effect meta-analysis of serum 25(OH)D on pul-
monary function, EA cohorts had low to moderate hetero-
geneity, whereas AA cohorts had low heterogeneity (Fig. 1,
online Supplementary Fig. S2). We did a sensitivity analysis
using random-effects meta-analysis among EA cohorts for the
FEV1 and FVC outcomes, and no substantial change was found
in the meta-analysed effect estimates and corresponding SE

(coefficient of 1 nmol/l 25(OH)D on the FEV1 outcome was 1·11
(SE 0·12)ml in the fixed-effects model and 1·21 (SE 0·19)ml in the
random-effects model; coefficient on the FVC outcome was 1·29
(SE 0·14)ml in the fixed-effects model and 1·31 (SE 0·20)ml in
the random-effects model). Meta-regression was also per-
formed in the EA cohorts and we found that among these
cohorts, cohorts with lower mean 25(OH)D concentration had
stronger 25(OH)D–PFT associations (Fig. 2). The proportion of
ever smokers and of former smokers had significant linear
associations with the 25(OH)D–PFT coefficients (online Sup-
plementary Fig. S3), and these two variables were both highly
correlated with mean 25(OH)D levels (Pearson’s r< −0·75 for
all pairwise correlations). The 25(OH)D–PFT association in EA
cohorts varied by 25(OH)D assay method (meta-regression
P=0·0059); the association was attenuated in cohorts using RIA
compared with cohorts using liquid chromatography in tandem
with MS (pairwise P<0·005, online Supplementary Fig. S4). Mean
age of each cohort was a significant positive modifier of the 25
(OH)D–FEV1 association, while time difference between 25(OH)D
and spirometry measures did not affect the 25(OH)D–PFT asso-
ciation (online Supplementary Fig. S3).

To examine the potential impact of family relatedness
between the FHS-Gen3 and the FHS-Offspring cohorts on the
meta-analysis, sensitivity analysis confirmed that the findings
were unchanged when either cohort was excluded (results not
shown). In addition, the meta-analysis findings were not sen-
sitive to exclusion of residual outliers.

In the EA cohorts, 25(OH)D had a greater positive association with
FVC in current smokers than in never smokers (βcurrent×25(OH)D=
7·5ml for 10 nmol/l increment of 25(OH)D, P= 0·047).
Similarly, 25(OH)D had a greater positive association with FVC
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Table 1. Cross-sectional participant characteristics of each cohort in the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (n 27 128)*
(Mean values and standard deviations)

ARIC CARDIA CHS† HABC‡ MESA AGES FHS (Offspring) FHS (Gen3) RS

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

European ancestry
cohorts
Number of participants 8327 172 1297 1411 1113 1685 1639 3610 3584
Males (%) 46·0 58·7 30·2 53·3 49·2 40·8 48·1 47·3 44·6
Current smoker (%) 23·4 11·6 9·4 6·5 8·4 9·8 14·3 15·3 16·0
Former smoker (%) 34·9 16·3 44·9 49·8 47·2 42·4 50·5 28·0 52·9
Pack-years§ 28·0 20·9 6·2 7·2 28·1 25·3 36·4 32·0 30·1 29·6 24·6 21·9 26·5 22·8 12·4 13·4|| 22·9 21·6
Age (years) 54·2 5·7 34·8 3·1 73·7 4·4 73·7 2·8 66·3 9·9 76·2 5·6 59·4 9·3 40·2 8·7 64·4 9·7
Height (m) 1·69 0·09 1·73 0·09 1·63 0·09 1·67 0·09 1·69 0·10 1·67 0·09 1·68 0·09 1·71 0·09 1·69 0·09
Weight (kg)¶ 76·8 16·2 76·9 17·0 70·6 14·2 74·5 14·5 79·7 17·3 75·4 14·7 79·4 17·2 78·6 18·4 79·5 14·6
FEV1 (ml) 2946 767 3881 743 2010 611 2324 649 2556 768 2142 670 2724 757 3592 787 2848 866
FVC (ml) 3987 973 4967 999 2881 829 3118 810 3492 995 2877 837 3711 950 4621 999 3692 1063
FEV1/FVC 0·739 0·077 0·785 0·060 0·700 0·095 0·745 0·078 0·734 0·087 0·744 0·087 0·733 0·078 0·779 0·063 0·771 0·082
Serum 25(OH)D
(nmol/l)**

64·7 21·8 95·0 35·3 68·0 27·9 72·2 25·6 75·6 28·2 52·4 23·5 49·2 18·9 92·8 36·0 61·0 27·4

Never smoker 64·3 21·0 95·4 34·4 67·1 25·1 73·7 25·9 76·5 27·7 54·1 22·8 49·6 18·6 93·2 35·4†† 59·7 25·9
Former smoker 67·1 21·5 94·5 43·0 69·4 29·4 71·7 24·8 76·2 28·5 52·3 24·1 49·8 18·6 93·5 37·0 62·3 27·7
Current smoker 61·8 23·1 92·7 29·5 65·4 33·2 65·0 28·1 66·9 28·2 44·5 22·7 45·9 20·6 89·9 36·3 59·5 29·4

Method of 25(OH)D
measurement

LC-MS/MS RIA LC-MS/MS RIA LC-MS/MS CLIA RIA RIA Electro-CLIA

Time from 25(OH)D to
PFT (d)‡‡

−1073 67 1122 89 363 29 −382 39 1765 112 1 5 133 377 2 61 846 808

Season of 25(OH)D
measurement
(%)§§
Spring 31·2 8·1 20·5 30·5 29·0 22·4 29·2 26·8 29·6
Summer 26·1 36·1 30·1 18·1 22·2 12·4 11·0 29·6 18·9
Autumn 23·3 34·3 29·6 22·8 24·9 33·8 29·1 24·1 30·0
Winter 19·5 21·5 19·8 28·6 23·9 31·4 30·7 19·4 21·5

African ancestry cohort
Number of participants 2339 157 168 863 763
Males (%) 35·3 51·6 25·6 44·5 47·4
Current smoker (%) 27·5 26·1 10·7 15·8 15·7
Former smoker (%) 23·9 9·6 42·9 39·3 38·3
Pack-years§ 21·4 20·7 5·3 4·6 21·9 18·3 29·4 23·4 23·6 21·8
Age (years) 53·3 5·7 33·9 3·2 71·9 4·5 73·4 2·9 65·6 9·7
Height (m) 1·68 0·09 1·71 0·10 1·63 0·08 1·66 0·09 1·68 0·10
Weight (kg)¶ 83·5 17·1 82·2 16·9 75·7 13·3 78·2 15·1 84·3 16·8
FEV1 (ml) 2495 638 3237 709 1801 508 1958 566 2200 667
FVC (ml) 3255 806 4077 920 2507 706 2594 712 2933 869
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Table 1. Continued

ARIC CARDIA CHS† HABC‡ MESA AGES FHS (Offspring) FHS (Gen3) RS

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

FEV1/FVC 0·768 0·077 0·799 0·070 0·723 0·076 0·757 0·090 0·755 0·093
Serum 25(OH)D
(nmol/l)**

47·4 17·5 69·4 31·2 44·6 21·1 51·8 22·4 47·9 22·3

Never smoker 46·8 16·7 71·3 30·1 43·7 19·2 51·8 22·7 49·1 22·3
Former smoker 48·5 18·0 69·2 35·6 47·2 24·2 52·3 21·8 49·3 22·6
Current smoker 47·5 18·4 64·8 32·4 38·3 14·9 50·4 23·2 40·9 20·0

Method of 25(OH)D
measurement

LC-MS/MS RIA LC-MS/MS RIA LC-MS/MS

Time from 25(OH)D to
PFT (d)‡‡

−1054 114 1101 104 350 26 −390 53 1719 115

Season of 25(OH)D
measurement
(%)§§
Spring 30·0 10·2 58·9 35·6 34·6
Summer 30·7 56·0 7·1 16·2 23·5
Autumn 20·7 23·6 8·9 24·9 19·7
Winter 18·6 10·2 25·0 23·3 22·3

ARIC, Atherosclerosis Risk in Communities Study; CARDIA, Coronary Artery Risk Development in Young Adults Study; CHS, Cardiovascular Health Study; HABC, Health, Aging, and Body Composition Study; MESA, Multi-Ethnic Study of
Atherosclerosis; AGES, Age, Gene, Environment, Susceptibility Study − Reykjavik, Iceland; FHS (Offspring), Framingham Heart Study − Offspring Cohort; FHS (Gen3), Framingham Heart Study − Generation 3 Cohort; RS,
Rotterdam Study (Netherlands); FEV1, forced expiratory volume in the 1st second; FVC, forced vital capacity; 25(OH)D, 25-hydroxyvitamin D; LC-MS/MS, liquid chromatography in tandem with MS; CLIA, chemiluminescence
immunoassay; RIA, radioimmunoassay.

* AGES, RS and FHS only have participants of European ancestry; n 22838 for EA, n 4290 for AA, total n 27128.
† The number of participants used to compute descriptive statistics in CHS excluded those who had residual outliers based on the preliminary models (n 8 for EA and n 6 for AA); whereas other cohorts used the number of participants

before applying residual exclusion for the descriptive statistics.
‡ Numbers vary slightly for different outcomes in HABC (for the FVC outcome, n 1385 for EA and n 821 for AA; for the ratio outcome, n 1382 for EAs and n 817 for AAs). The numbers of participants for the FEV1 outcome are used.

However, the descriptive statistics is similar across different outcomes.
§ Pack-years is calculated only among current and former smokers in each cohort.
|| We used 1554 ever smokers here, instead of a total of 1561 ever smokers in the Gen3 cohort, because the pack-years of seven ever smokers were so small that they were coded as 0. Therefore, these seven ever smokers do not

contribute to the pack-years descriptive statistics here.
¶ The number of participants who have weight data is slightly different from the total number of participants in each cohort. However, the descriptive statistics of weight stays similar.
** Mean (SD) of serum 25(OH)D level for all the participants in each cohort, and mean (SD) of 25(OH)D level in participants with each smoking status are shown here, stratified by ancestry.
†† We used 2046 never smokers, rather than a total of 2049 never smokers in the Gen3 cohort, to compute the 25(OH)D level in never smokers.
‡‡ The time difference is the interval between the time when pulmonary function was measured and the time when serum vitamin D was measured. The difference is positive, if the serum vitamin D was measured before the pulmonary

function test; whereas the value is negative, if the serum vitamin D was measured after the pulmonary function test.
§§ The proportion of participants in each season when their serum was measured was rounded (thus rounding errors mean sums may not be exactly 100%).
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in former smokers than in never smokers (βformer×25(OH)D= 7·9ml
for 10nmol/l increment of 25(OH)D, P= 0·0065) (Fig. 3). For the
FEV1 outcome in the EA cohorts, the interaction coefficients for 25
(OH)D and smoking status had the same positive direction as the
coefficients for FVC, but were not statistically significant for either
current (P= 0·14) or former smokers (P= 0·14). No statistical
evidence of interaction of 25(OH)D and cigarette smoking was
found in the AA cohorts for either outcome. To put the interaction
finding into context, a 10nmol/L higher serum 25(OH)D was
associated with a 17·3ml higher FVC in current smokers and a
16·6ml higher FVC in former smokers, which was more than
double the association magnitude in never smokers (β= 7·8ml).
A similar trend was found for the FEV1 outcome in the EA cohorts.
For 10nmol/l higher serum 25(OH)D, FEV1 was higher by 14·0ml
in current smokers, 12·0ml in former smokers and 8·0ml in never
smokers (Fig. 4).

Discussion

This study investigated the association of serum 25(OH)D with
pulmonary function using multiple cohorts of different ances-
tries. We found a consistently positive association of serum 25

(OH)D with FEV1 and FVC across both EA and AA groups. In
addition, in the EA group, a significantly stronger association
was observed for current and former smokers, compared with
never smokers.

A previous cross-sectional study in a EA population (two
Copenhagen cohorts: n 10 116 and n 8391, respectively) simi-
larly reported positive associations of 25(OH)D with FEV1

percentage predicted and FVC percentage predicted, but not
with FEV1/FVC

(16). The magnitude of the association was about
four times greater in the Copenhagen study, which may be due
to the difference in the mean serum 25(OH)D (Danish median
approximately 42 nmol/l v. CHARGE median of approximately
65 nmol/l) given our finding that the 25(OH)D–PFT association
was stronger in cohorts with lower serum 25(OH)D. Our find-
ing for the serum 25(OH)D–FEV1 association was similar in
magnitude to the association reported in a British cohort of 6789
participants with an average age of 45 years(17), but weaker
than a previous report from the FHS cohort(15). Given that the
rate of decline in FEV1 at age 45 years is increased by
approximately 15ml/year in current smokers(35), we estimate
that a 10 nmol/l higher 25(OH)D is similar to approximately
1 year of current smoking-related decline in FEV1 for both
ancestries, but in the opposite direction. Several putative

EA cohorts (sample size)
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Fig. 1. Forest plots of the meta-analysis of serum 25-hydroxyvitamin D (25(OH)D) on forced expiratory volume in the 1st second (FEV1) and forced vital capacity
(FVC) across cohorts in the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium, stratified by participant ancestry. Associations are
presented for serum 25(OH)D on (a) FEV1 in European ancestry cohorts (n 22 787). (b) FEV1 in African ancestry cohorts (n 4282). (c) FVC in European ancestry
cohorts (n 22 777). (d) FVC in African ancestry cohorts (n 4239). β (unit: ml) denotes the coefficient from the fixed-effects meta-analysis for serum 25(OH)D on the
pulmonary function outcome per 1 nmol/l increment of 25(OH)D, with its 95% CI. Cohorts findings were ordered from the least to the most precise, and heterogeneity is
presented (I2). EA, European ancestry; AA, African ancestry; CARDIA, Coronary Artery Risk Development in Young Adults Study; FHS (Offspring), Framingham Heart
Study – Offspring Cohort; AGES, Age, Gene, Environment, Susceptibility Study – Reykjavik, Iceland; CHS, Cardiovascular Health Study; RS, Rotterdam Study
(Netherlands); ARIC, Atherosclerosis Risk in Communities Study; FHS (Gen3), Framingham Heart Study – Generation 3 Cohort; FE, fixed-effects; HABC, Health,
Aging, and Body Composition Study; MESA, Multi-Ethnic Study of Atherosclerosis.
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biological mechanisms may support a causal association
between low 25(OH)D levels and worse pulmonary function.
First, lung tissue cells can locally convert 25(OH)D to 1,25-
(OH)2D

(36), the active form of vitamin D, which could improve
the immune and anti-inflammatory responses in lungs via gene
regulation(36–38). If there is not enough circulating 25(OH)D, it is
likely that the resolution of inflammation in lungs would be
slower, which could have a negative impact on pulmonary
function. In addition, 1,25-(OH)2D in lungs, converted locally
from 25(OH)D, can regulate the extracellular matrix homeostasis
via the ERp60-mediated pathway(39), and this is important for
maintenance of lung structure. Furthermore, low vitamin D status
could decrease circulating Ca status, which in turn can adversely
affect thoracic skeleton mobility and respiratory muscle
performance(40,41).

Our findings show that the association of serum 25(OH)D
with FEV1 and FVC were stronger in magnitude in AA v. EA
participants, although the difference by race did not reach sta-
tistical significance. The finding may reflect the lower serum 25
(OH)D in AA participants, which is consistent with the meta-
regression finding and with a previous study reporting atte-
nuated associations at higher serum 25(OH)D(15). Future studies
that investigate genetic variation in EA and AA in the context of
serum 25(OH)D may help explain the differences.

In EA participants, the positive interaction terms between
serum 25(OH)D and smoking status supported a stronger
magnitude of association of serum 25(OH)D with FVC in cur-
rent and former smokers than in never smokers, with a con-
sistent, but not statistically significant, difference for FEV1. The
interaction finding is consistent with a prior cross-sectional
National Health and Nutrition Examination Survey (NHANES)
study, which reported a stronger 25(OH)D–FEV1 association in
current and former smokers than in never smokers that was
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Fig. 2. Meta-regression of mean serum 25-hydroxyvitamin D (25(OH)D) levels
against the association estimates of 25(OH)D with pulmonary function test in
nine European ancestry cohorts in the Cohorts for Heart and Aging Research
in Genomic Epidemiology Consortium. (a) Forced expiratory volume in the 1st
second (FEV1) outcome (coefficient unit: ml per 1 nmol/l 25(OH)D), and
(b) forced vital capacity (FVC) outcome (coefficient unit: ml per 1nmol/l 25(OH)D).
The modifier is mean serum 25(OH)D level of each nine cohorts. A linear
regression line is present for each sub-figure, with a meta-regression P value of
0·0006 for the FEV1 outcome, and 0·005 for the FVC outcome. The figure also
shows the measurement method for the serum 25(OH)D assay (legend shows
symbols for each of the four assay methods). , LC-MS/MS; , RIA; , CLIA; ,
Electro-CLIA. LC-MS/MS, liquid chromatography in tandem with mass
spectrometry; RIA, radioimmunoassay; CLIA, chemiluminescence immunoassay;
MESA, Multi-Ethnic Study of Atherosclerosis; FHS (Offspring), Framingham Heart
Study – Offspring Cohort; RS, Rotterdam Study (Netherlands); ARIC,
Atherosclerosis Risk in Communities Study; AGES, Age, Gene, Environment,
Susceptibility Study – Reykjavik, Iceland; CHS, Cardiovascular Health Study;
HABC, Health, Aging, and Body Composition Study; CARDIA, Coronary Artery
Risk Development in Young Adults Study; FHS (Gen3), Framingham Heart
Study – Generation 3 Cohort.
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Fig. 3. Forest plots of the interaction meta-analysis of serum 25-
hydroxyvitamin D (25(OH)D) and smoking status on forced vital capacity
(FVC) in the European ancestry cohorts in the Cohorts for Heart and Aging
Research in Genomic Epidemiology Consortium (n 22777). (a) Current
smokers and (b) former smokers. β (unit: ml) denotes the interaction term
coefficient of 25(OH)D and smoking status on FVC from the fixed effects meta-
analysis, per 1 nmol/l increment of 25(OH)D, with its 95% CI. Cohorts were
ordered from the least to the most precise, and heterogeneity is presented (I2).
EA, European ancestry; CARDIA, Coronary Artery Risk Development in Young
Adults Study; MESA, Multi-Ethnic Study of Atherosclerosis; HABC, Health,
Aging, and Body Composition Study; AGES, Age, Gene, Environment,
Susceptibility Study – Reykjavik, Iceland; FHS (Offspring), Framingham
Heart Study – Offspring Cohort; CHS, Cardiovascular Health Study; RS,
Rotterdam Study (Netherlands); ARIC, Atherosclerosis Risk in Communities
Study; FHS (Gen3), Framingham Heart Study—Generation 3 Cohort; FE,
fixed-effects.
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near statistical significance (P= 0·06)(13). Given smokers have a
higher level of oxidative stress and lower pulmonary function
than never smokers, partly due to chronic inflammation in lung
tissue, the stronger protective association of 25(OH)D on pul-
monary function in smokers suggests a benefit for smokers. To
explore this interaction, estimates of the 25(OH)D–PFT association
were computed within each smoking category. In EA participants,
the 25(OH)D–FEV1 (or FVC) associations were statistically sig-
nificant in all strata. Generally, in ever smokers of EA, the coeffi-
cients for 25(OH)D were greater for FVC than for FEV1.
Meta-regression provided additional evidence for effect

modification by smoking. The proportion of ever smokers was a
significant modifier of the association of serum 25(OH)D with
FEV1 and FVC. The higher the proportion of ever smokers, the
greater the 25(OH)D–PFT association. More specifically, the
proportion of former smokers explained the heterogeneity in
the 25(OH)D–PFT association across cohorts more fully than
the proportion of current smokers; this may be explained by a
survival bias in older participants who were current smokers.
The meta-regression, based on mean age of the cohorts,
showed that cohorts with a higher mean age had a greater
association magnitude of 25(OH)D with FEV1. Given that meta-
regression analysis uses cohort-level factors (e.g. mean age
rather than age of each individual), ecological bias is possi-
ble(42). Nevertheless, the age-related meta-regression finding
was consistent with a prior NHANES study that showed the
association of 25(OH)D and FEV1 was stronger in people over
age 60 compared with younger individuals(13).

Several methodological considerations should be taken into
account in interpreting the findings of this study. First, the meta-
regression showed stronger 25(OH)D–PFT associations in
cohorts with lower mean serum 25(OH)D, indicating a non-
linear 25(OH)D–PFT association. This finding is consistent with
a prior study in the FHS cohort, which reported a non-linear
association and a stronger 25(OH)D–FEV1 association in parti-
cipants at risk of vitamin D deficiency (<30 nmol/l)(15). Second,
serum 25(OH)D was measured by four different methods across
the cohorts. For example, two cohorts with high mean 25(OH)D
(>90 nmol/l) used RIA methods. These same cohorts had a
lower magnitude estimate of the 25(OH)D–PFT association; if
the higher mean represents the ‘truth’ (and is not caused by
measurement error in the RIA assay), then the lower 25(OH)D–
PFT association may be primarily driven by the vitamin D dis-
tribution and not by the RIA method. Whether the assay method
itself directly influences the estimate of the 25(OH)D–PFT
association requires further data. Third, in this cross-sectional
meta-analysis, minor differences were found in the time
separation between the measurement of serum 25(OH)D and
pulmonary function, but the meta-regression test for hetero-
geneity confirmed that time separation between measurements
did not affect the 25(OH)D–PFT associations. Indeed, past
studies with longitudinal measurements of serum 25(OH)D
reported a high correlation of 25(OH)D measurements over a
long period of time, with a correlation coefficient of 0·7 for
measurements separated by 1 year, 0·5 for measurements
separated by 5 years(43), and 0·42–0·52 for measurements
separated by 14 years(44), which supports the use of a single 25
(OH)D measurement to represent usual level. Fourth, residual
confounding was unlikely given the consistent results across
multiple cohorts in various settings. Weight was adjusted for the
FVC outcome, given that higher weight and adiposity negatively
affects lung volume (i.e. FVC)(45); weight was not adjusted in
the FEV1 models, given FEV1 is a measure of airways
obstruction and not physical restriction of lung volume. Phy-
sical activity was not adjusted because it is not a confounder in
estimating the serum 25(OH)D–PFT association; while physi-
cal activity is known to contribute to O2 utilisation in lungs(46),
little evidence and no biological rationale exists for a causal
association of physical activity with either FEV1 or FVC(47),
which are markers for airways obstruction and lung volume,
respectively. Finally, even though three cohorts (AGES, CAR-
DIA, MESA) had the outcome or the exposure only measured
in an ancillary study (random subset of the entire cohort), we
do not expect selection bias to affect the estimate of the serum
vitamin D–PFT association in this meta-analysis; indeed, the
association magnitude and direction was consistent across all
cohorts, regardless of the proportion of the original cohort
contributing to the analysis. Thus, selection bias is expected to
be negligible and would likely lead to an underestimated
association, given the participants retained in the cohorts are
expected to be, on average, healthier than those who were lost
to follow-up.

This study meta-analysed the serum 25(OH)D–PFT asso-
ciation across nine cohorts, according to a common pipeline
that harmonised the variables and statistical analysis. The
sample size comprised 17 569 EA participants from the USA;
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Fig. 4. Meta-analysis of the association of serum 25-hydroxyvitamin
D (25(OH)D) – pulmonary function test outcomes among current, former and
never smokers in the European ancestry cohorts in the Cohorts for Heart and
Aging Research in Genomic Epidemiology Consortium. Forced expiratory volume
in the 1st second (FEV1, ) and forced vital capacity (FVC, ) are presented for
each smoking status. β (unit: ml) denotes that 1nmol/l higher serum 25(OH)D was
associated with a β mL higher FEV1 (or FVC), calculated from an analysis
including the interaction of serum 25(OH)D and smoking status. The error bar
represents ±1 standard error. We used 22786 European ancestry (EA)
participants for the FEV1 outcome and 22777 EA participants for the FVC
outcome.
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5269 EA participants from Iceland and the Netherlands; and
4290 AA participants from the USA, all of whom were 19–95
years old. The sample provided excellent representation of
the US population, based on comparisons of demographic
factors including sex, height, weight, smoking status and
COPD prevalence (about 6·1 %) to national surveys(48–50),
which strengthens the external validity of the study’s
findings.
In summary, using meta-analysis, we estimated a positive

association of serum 25(OH)D with the pulmonary function
parameters FEV1 and FVC in both EA and AA participants. Asso-
ciations varied by smoking status in the EA group, with stronger
serum 25(OH)D–PFT associations seen in current and former
smokers. The observational design means we cannot infer a
causal association, and future studies, such as randomised con-
trolled trials or Mendelian randomisation studies, are needed to
further investigate the causality of 25(OH)D on pulmonary
function.
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