4,115 research outputs found
Investigating the hard X-ray emission from the hottest Abell cluster A2163 with Suzaku
We present the results from Suzaku observations of the hottest Abell galaxy
cluster A2163 at . To study the physics of gas heating in cluster
mergers, we investigated hard X-ray emission from the merging cluster A2163,
which hosts the brightest synchrotron radio halo. We analyzed hard X-ray
spectra accumulated from two-pointed Suzaku observations. Non-thermal hard
X-ray emission should result from the inverse Compton (IC) scattering of
relativistic electrons by the CMB photons. To measure this emission, the
dominant thermal emission in the hard X-ray band must be modeled in detail. To
this end, we analyzed the combined broad-band X-ray data of A2163 collected by
Suzaku and XMM-Newton, assuming single- and multi-temperature models for
thermal emission and the power-law model for non-thermal emission. From the
Suzaku data, we detected significant hard X-ray emission from A2163 in the
12-60 keV band at the level (or at the level if a
systematic error is considered). The Suzaku HXD spectrum alone is consistent
with the single-T thermal model of gas temperature keV. From the XMM
data, we constructed a multi-T model including a very hot ( keV)
component in the NE region. Incorporating the multi-T and the power-law models
into a two-component model with a radio-band photon index, the 12-60 keV energy
flux of non-thermal emission is constrained within . The 90% upper limit of detected IC
emission is marginal ( in the
12-60 keV). The estimated magnetic field in A2163 is .
While the present results represent a three-fold increase in the accuracy of
the broad band spectral model of A2163, more sensitive hard X-ray observations
are needed to decisively test for the presence of hard X-ray emission due to IC
emission.Comment: 7 pages, 7 figures, A&A accepted. Minor correctio
Heat capacity uncovers physics of a frustrated spin tube
We report on refined experimental results concerning the low-temperature
specific heat of the frustrated spin tube material [(CuCl2tachH)3Cl]Cl2. This
substance turns out to be an unusually perfect spin tube system which allows to
study the physics of quasi-one dimensional antiferromagnetic structures in
rather general terms. An analysis of the specific heat data demonstrates that
at low enough temperatures the system exhibits a Tomonaga-Luttinger liquid
behavior corresponding to an effective spin-3/2 antiferromagnetic Heisenberg
chain with short-range exchange interactions. On the other hand, at somewhat
elevated temperatures the composite spin structure of the chain is revealed
through a Schottky-type peak in the specific heat located around 2 K. We argue
that the dominating contribution to the peak originates from gapped magnon-type
excitations related to the internal degrees of freedom of the rung spins.Comment: 4+ pages, 6 figure
Simulations of slow positron production using a low energy electron accelerator
Monte Carlo simulations of slow positron production via energetic electron
interaction with a solid target have been performed. The aim of the simulations
was to determine the expected slow positron beam intensity from a low energy,
high current electron accelerator. By simulating (a) the fast positron
production from a tantalum electron-positron converter and (b) the positron
depth deposition profile in a tungsten moderator, the slow positron production
probability per incident electron was estimated. Normalizing the calculated
result to the measured slow positron yield at the present AIST LINAC the
expected slow positron yield as a function of energy was determined. For an
electron beam energy of 5 MeV (10 MeV) and current 240 A (30 A)
production of a slow positron beam of intensity 5 10 s is
predicted. The simulation also calculates the average energy deposited in the
converter per electron, allowing an estimate of the beam heating at a given
electron energy and current. For low energy, high-current operation the maximum
obtainable positron beam intensity will be limited by this beam heating.Comment: 11 pages, 15 figures, submitted to Review of Scientific Instrument
Kernel functions and B\"acklund transformations for relativistic Calogero-Moser and Toda systems
We obtain kernel functions associated with the quantum relativistic Toda
systems, both for the periodic version and for the nonperiodic version with its
dual. This involves taking limits of previously known results concerning kernel
functions for the elliptic and hyperbolic relativistic Calogero-Moser systems.
We show that the special kernel functions at issue admit a limit that yields
generating functions of B\"acklund transformations for the classical
relativistic Calogero-Moser and Toda systems. We also obtain the
nonrelativistic counterparts of our results, which tie in with previous results
in the literature.Comment: 76 page
Gradual Disappearance of the Fermi Surface near the Metal-Insulator Transition in LaSrMnO
We report the first observation of changes in the electronic structure of
LaSrMnO (LSMO) across the filling-control metal-insulator
(MI) transition by means of in situ angle-resolved photoemission spectroscopy
(ARPES) of epitaxial thin films. The Fermi surface gradually disappears near
the MI transition by transferring the spectral weight from the coherent band
near the Fermi level () to the lower Hubbard band, whereas a pseudogap
behavior also exists in the ARPES spectra in the close vicinity of for
the metallic LSMO. These results indicate that the spectral weight transfer
derived from strong electron-electron interaction dominates the gap formation
in LSMO associated with the filling-control MI transition.Comment: 11 pages, 4 figure
- …