Monte Carlo simulations of slow positron production via energetic electron
interaction with a solid target have been performed. The aim of the simulations
was to determine the expected slow positron beam intensity from a low energy,
high current electron accelerator. By simulating (a) the fast positron
production from a tantalum electron-positron converter and (b) the positron
depth deposition profile in a tungsten moderator, the slow positron production
probability per incident electron was estimated. Normalizing the calculated
result to the measured slow positron yield at the present AIST LINAC the
expected slow positron yield as a function of energy was determined. For an
electron beam energy of 5 MeV (10 MeV) and current 240 μA (30 μA)
production of a slow positron beam of intensity 5 × 106 s−1 is
predicted. The simulation also calculates the average energy deposited in the
converter per electron, allowing an estimate of the beam heating at a given
electron energy and current. For low energy, high-current operation the maximum
obtainable positron beam intensity will be limited by this beam heating.Comment: 11 pages, 15 figures, submitted to Review of Scientific Instrument