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We report on theoretical and experimental results concerning the low-temperature specific heat of the

frustrated spin-tube material ½ðCuCl2tachHÞ3Cl�Cl2 (tach denotes 1,3,5-triaminocyclohexane). This sub-

stance turns out to be an unusually perfect spin-tube system which allows to study the physics of quasi-

one-dimensional antiferromagnetic structures in rather general terms. An analysis of the specific-heat data

demonstrates that at low enough temperatures the system exhibits a Tomonaga-Luttinger liquid behavior

corresponding to an effective spin-3=2 antiferromagnetic Heisenberg chain with short-range exchange

interactions. On the other hand, around 2 K the composite spin structure of the chain is revealed through a

Schottky-type peak in the specific heat. We argue that the dominating contribution to the peak originates

from gapped magnon-type excitations related to the internal degrees of freedom of the rung spins.
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Introduction.—Spin tubes constitute a special class of
quasi-one-dimensional spin ladder systems characterized
by periodic boundary conditions in the rung direction [1–
13]. The magnetic compound ½ðCuCl2tachHÞ3Cl�Cl2, for
sample preparation, see [14], is a geometrically frustrated
triangular spin tube, the frustration being related both to
the triangular arrangement of its rungs and to the twisted
geometry of the legs, compare Fig. 1(a). The relatively
simple exchange pathway structure, that thanks to high
symmetry is described by only two dominant Heisenberg
exchange couplings [15], as well as the extremely weak
exchange interactions between neighboring tubes, renders
½ðCuCl2tachHÞ3Cl�Cl2 an excellent real material to study
general properties of the spin-tube systems [4,6,9,11]. An
appropriate spin Hamiltonian describing the magnetic
properties of this material reads as

H ¼ XL
n¼1

X3
�¼1

½J1�n;� � �n;�þ1

þ J2�n;� � ð�nþ1;�þ1 þ �nþ1;��1Þ�; (1)

where �n;� (� ¼ 1, 2, 3) are spin-1=2 operators defined on
the vertices of the elementary triangle denoted by index n
(n ¼ 1; . . . ; L). As depicted in Fig. 1(b), the twisted spin
tube may also be thought of as a three-leg ladder with
periodic boundary conditions in the rung direction, where
the parameters J1 and J2 are strengths of the rung and
crossing (diagonal) exchange bonds, respectively.
½ðCuCl2tachHÞ3Cl�Cl2 is characterized by the parameters
J1=kB ¼ 1:8 K and J2=kB ¼ 3:9 K [15], whereas the leg
exchange constant J02 > 0, introduced for the sake of

clarity in Fig. 1(b), seems to vanish in this material.
Figure 1(b) clearly reveals the translation symmetry with
one triangle per unit cell.
Two extreme scenarios for the ground state of Eq. (1)

with antiferromagnetic couplings (J1, J2 > 0) were out-
lined in Ref. [9]. In the case of dominating J1 couplings,
the system maps onto an effective spin-chirality model,
where the additional chirality degrees of freedom appear as
a result of the ground-state degeneracy of each individual
triangle. On the other hand, for dominating J2 couplings
the system maps onto an effective spin-3=2 antiferromag-
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FIG. 1 (color online). (a) Sketch of the twisted spin-tube
system. (b) An equivalent spin model obtained through inversion
of every second triangle. The nth elementary cell contains the
spin-1=2 operators �n;1, �n;2, and �n;3.
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netic Heisenberg chain (AHC) containing additional bi-
quadratic exchange couplings.

In this Letter, we demonstrate by means of specific-heat
measurements, that the low-temperature properties of the
spin-tube material ½ðCuCl2tachHÞ3Cl�Cl2 reproduce the
behavior of a spin-3=2 AHC characterized by the effective
short-range exchange-coupling constant Jeff ¼ 2J2=3.
Since the exchange interactions between different tubes
are extremely small, the discussed compound also provides
a rare example of spin-3=2 AHC [16–20]. The experimen-
tal observables strongly suggest that if the system ever
orders this should be much below 0.1 K. At elevated
temperatures the measured specific heat exhibits a big
Schottky-type peak located around T � 2 K. A detailed
analysis—combining the semiclassical spin-wave ap-
proach with a number of numerical techniques such as
the quantum Monte Carlo (QMC) method, the Lanczos
exact numerical diagonalization (ED), and the complete
exact diagonalization [21,22]—implies that the main con-
tribution to the specific-heat peak stems from the lowest-
lying gapped magnon excitations resulting from the inter-
nal degrees of freedom of the composite rung spins.

Theoretical background.—Before discussing the experi-
mental results it is instructive to address the structure of the
low-energy part of the spectrum of Hamiltonian (1). To this
end we rewrite Eq. (1) in the form

H ¼ XL
n¼1

�
J1
2

�
s2n � 9

4

�
þ J2sn � snþ1

�
þ V: (2)

Here sn ¼ �n;1 þ �n;2 þ �n;3 is the rung spin operator

related to the nth triangle. The number of Cu sites is N ¼
3L, where L is the number of rungs. The interaction term V
reads as

V ¼ ðJ02 � J2Þ
XL
n¼1

X3
�¼1

�n;� � �nþ1�; (3)

where we have included an additional leg exchange inter-
action J02, see Fig. 1(b). The last two equations explicitly
show that the condition J2 ¼ J02 defines a special case
where the model for sn ¼ 3=2 maps on an effective
spin-3=2 AHC. Up to first order in J02 � J2, the interaction
term V in Eq. (2) results in an effective exchange constant
for this effective spin-3=2 AHC: Jeff ¼ J2 þ ðJ02 � J2Þ=3.
At the special point J02 ¼ 0, the result Jeff ¼ 2J2=3 coin-
cides with the first-order result of Ref. [9], obtained by
another perturbation scheme.

The above considerations imply that a qualitative pic-
ture of the low-lying spin excitations can be obtained
already in the framework of the semiclassical spin-wave
approach starting from the classical Néel configuration
jSt;�St; . . .i, where St is the maximal value of the z
component of the rung spin (St ¼ 3=2 in the present
case). Since the elementary cell contains three spin-S
variables, there appear three different branches of spin-
wave modes

EmðkxÞ¼4SJ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1��sin2

ky
2

�
2�1

4
½coskxþcosðkxþkyÞ�2

s
;

(4)

where � ¼ J1=J2, ky ¼ 2�m=3 (m ¼ 0, 1, 2), and S is the

spin of a single site (S ¼ 1=2 in the present case). As may
be expected, the energy of the m ¼ 0 branch does not
depend on the parameter J1, since it is related to the
dynamics of the cell spins sn as a whole

E0ðkxÞ ¼ vsj sinkxj; vs ¼ ð6SÞ 2J2
3

: (5)

The above expressions reproduce the well-known semi-
classical results for the dispersion relation and the related
spin-wave velocity vs of a spin-(3 � S) AHC with the
effective exchange constant Jeff ¼ 2J2=3.
The dispersion relations of the ky ¼ 2�=3 and ky ¼

4�=3 excitations can be expressed in the following form

E1;2ðkxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4S2J22sin

2

�
kx � 2�

3

�s
; (6)

where the excitation gap � ¼ 4SJ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� 3�=4Þ2 � 1=4

p
corresponds to the lowest-lying modes at wave vectors
kx ¼ �=3 and 2�=3.
The solid curves in Fig. 2 show the dispersion relations

of the discussed spin-wave excitations. On the other hand,
the symbols depict the positions of the lowest-lying triplet
states, as obtained by the ED method for periodic clusters
containing L ¼ 8 and 12 unit cells. Apart from the finite-
size effects related to the ED results, it is clearly seen that
both methods qualitatively yield similar results. As a mat-
ter of fact, the discussed spin-wave branches may also be
considered as one-dimensional analogs of the three spin-
wave branches in the triangular lattice antiferromagnet. In
this respect, the lowest-lying excitations at kx ¼ 0, 2�=3
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FIG. 2 (color online). Spin-wave excitation modes [solid
curves, Eqs. (5) and (6)] compared with the lowest triplet
excitations in two periodic clusters (symbols).
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and 4�=3 in the spin tube are one-dimensional analogs of
the three Goldstone modes in the triangular lattice
antiferromagnet.

More accurate estimates for the parameters of the exci-
tation spectrum vs and � can be obtained from an extrapo-
lation of the ED results for L ¼ 6, 8, 10, and 12 unit cells.
Using the approach of Ref. [17], one finds the following
estimates from the extrapolations of E0ð2�=LÞ vs
sinð2�=LÞ=L and E1ð2�=3Þ vs 1=L (see Fig. 3):

vs ¼ 10:06 K ¼ 3:87
2J2
3kB

; �=kB ¼ 5:32 K: (7)

Interestingly, the extrapolation result 3vs=ð2J2=kBÞ ¼ 3:87
exactly reproduces the density-matrix renormalization
group estimate for the spin-wave velocity of the spin-3=2
AHC characterized by the exchange constant 2J2=3 [17].
As already discussed, the same effective exchange constant
(Jeff ¼ 2J2=3) arises both in the first-order result for the
effective spin model and in the semiclassical spin-wave
approach. Below we demonstrate numerically that the
specific heat of a spin-3=2 AHC with the exchange con-
stant 2J2=3 excellently reproduces the experimental results
in the low-temperature region T � 0:5 K.

Experiment.—The specific heat of polycrystalline
samples of 100 �g of ½ðCuCl2tachHÞ3Cl�Cl2, symbols in
Figs. 4, was measured by the relaxation method down to
120 mK by using a microcalorimeter. Technical details are
given in Ref. [23]. To obtain the magnetic specific heat,
(i) the heat capacity of the holder and stage and (ii) the
contribution of phonons are subtracted. The former is done
by using the blank data without sample. The latter is
approximated by a Debye-like specific-heat contribution,
where the prefactor of T3 is determined so that the mag-
netic entropy saturates around 10 K. Thanks to the small
exchange couplings the important features of the magnetic
specific heat are practically not altered by phonons below
T � 3 K (phonon contribution less than 1% at 2 K and
about 7% at 4 K). A more detailed description of the
experimental result will be published separately.

Analysis of the experimental results.—The solid curve in
Fig. 4 depicts the QMC result for the specific heat of the
spin-3=2 periodic AHC composed of 100 spin sites, that is
evaluated employing the ALPS code [24]. As an effective

exchange parameter we used Jeff ¼ 2J2=3. As can be seen
in Fig. 4, the QMC result reproduces the experimental data
very well in the region T � 0:5. This means that even for
J02 ¼ 0, when the parameter (J02 � J2) is definitely not
small, the low-energy physics of Hamiltonian (1) is de-
scribed by the spin-3=2 AHC. Therefore, it turns out that
the theoretically predicted biquadratic exchange term [3,9]
plays no role in the experimentally interesting region of the
phase diagram characterized by the dimensionless parame-
ter J1=J2 ¼ 0:46.
As generally accepted, the spin-3=2 AHC and the

spin-1=2 AHC belong to the same universality class char-
acterized by the conformal central charge c ¼ 1 [17].
Therefore, in the extremely low-temperature regime we
expect the universal relation

CðTÞ
NkB

¼ �cT

9vs

; (8)

with the velocity of the gapless spin excitations vs ¼
10:06 K. As clearly seen in Fig. 4, already for T � 0:5 K
the measured specific heat not only coincides with the
QMC result, but also nicely extrapolates towards the uni-
versal behavior represented by Eq. (8). The latter observa-
tions not only strongly imply that the spin-tube compound
½ðCuCl2tachHÞ3Cl�Cl2 is characterized by a gapless
Tomonaga-Luttinger liquid ground state, they also rule
out the other possibility of c ¼ 9=5 related to the universal-
ity class of spin-S integrable models [17]. In a recent
report, nuclear magnetic resonance measurements also
indicate a gapless spin state in the same material based
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FIG. 3 (color online). Extrapolation of the ED results giving
the parameters of the excitation spectrum vs (left) and � (right).

FIG. 4 (color online). Specific heat (per Cu spin) of
½ðCuCl2tachHÞ3Cl�Cl2. The symbols always denote the experi-
mental values. Main figure: The solid curve is the QMC result
for a spin-3=2 chain of length L ¼ 100. The dashed line provides
the linear specific heat corresponding to the universal
Tomonaga-Luttinger liquid form presented by Eq. (8), by using
the extrapolation result vs ¼ 10:06 K. Inset: The solid curve
depicts the two-level approximation (9). The broken curves
denote the specific heat for three complete diagonalizations for
finite sizes.
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on estimates for the extremely low-temperature part of the
magnetic susceptibility [25].

To explain the experimental data at intermediate tem-
peratures around 2 K, we use the established structure of
the low-lying excitation spectrum, compare Fig. 2. As a
rough approximation, one may take E1;2ðkxÞ � � and use

the well-known expression for the specific heat of a two-
level system (with the assumption that the excited level has
twice the weight of the ground state, i.e., r ¼ 2 in the
following expression). Since the exact density of states is
not known in the thermodynamic limit, we use an overall
parameter A in order to fix the height of the Schottky peak:

C

NkB
¼ A

rð�=TÞ2 expð�=TÞ
½expð�=TÞ þ r�2 : (9)

Notice that the position of the peak does not depend on the
value of A. The expression for CðTÞ, Eq. (9), with �=kB ¼
5:32 K is plotted in the inset of Fig. 4 by a thick curve
together with the experimental data. One observes that it
reproduces very well not only the position of the peak
(Tm � 2 K) but also the behavior of the specific heat for
T < Tm down to T � 0:7 K, where the contribution from
the gapless branch E0ðkxÞ becomes important. In addition,
in the inset of Fig. 4 we also show the specific heat that
results from complete diagonalizations of a few finite-size
periodic clusters. As easily seen, the overall agreement is
good, in spite of the pronounced finite-size effects. This
agreement also demonstrates the consistency with previous
magnetization data, from which the exchange couplings
had been derived [15]. Concerning the observed discrep-
ancies for higher temperatures (T * 3 K), they could pos-
sibly be related to finer details of the phonon spectral
density as suggested for other quasi one-dimensional ma-
terials [26].

Summary.—We demonstrated that the low-temperature
specific-heat behavior of the spin-tube compound
½ðCuCl2tachHÞ3Cl�Cl2 suggests a Tomonaga-Luttinger liq-
uid type ground state for this material, corresponding to an
effective spin-3=2 antiferromagnetic Heisenberg chain
characterized by the short-ranged exchange-coupling con-
stant Jeff ¼ 2J2=3. On the other hand, we argued that the
main contribution to the observed Schottky-type peak
around T � 2 K comes from the lowest-lying gapped
magnon-type excitations resulting from the internal de-
grees of freedom of the composite rung spins.
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[14] G. Seeber, P. Kögerler, B.M. Kariuki, and L. Cronin,

Chem. Commun. (Cambridge) 1580 (2004).
[15] J. Schnack, H. Nojiri, P. Kögerler, G. J. T. Cooper, and L.
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