741 research outputs found

    Preoperative Cognitive Impairment and Postoperative Delirium Predict Decline in Activities of Daily Living after Cardiac Surgery-A Prospective, Observational Cohort Study.

    Get PDF
    Cardiac surgery and subsequent treatment in the intensive care unit (ICU) has been shown to be associated with functional decline, especially in elderly patients. Due to the different assessment tools and assessment periods, it remains yet unclear what parameters determine unfavorable outcomes. This study sought to identify risk factors during the entire perioperative period and focused on the decline in activity of daily living (ADL) half a year after cardiac surgery. Follow-ups of 125 patients were available. It was found that in the majority of patients (60%), the mean ADL declined by 4.9 points (95% CI, -6.4 to -3.5; p < 0.000). In the "No decline" -group, the ADL rose by 3.3 points (2.0 to 4.6; p < 0.001). A multiple regression analysis revealed that preoperative cognitive impairment (MMSE ≤ 26; Exp(B) 2.862 (95%CI, 1.192-6.872); p = 0.019) and duration of postoperative delirium ≥ 2 days (Exp(B) 3.534 (1.094-11.411); p = 0.035) was independently associated with ADL decline half a year after the operation and ICU. Of note, preoperative ADL per se was neither associated with baseline cognitive function nor a risk factor for functional decline. We conclude that the preoperative assessment of cognitive function, rather than functional assessments, should be part of risk stratification when planning complex cardiosurgical procedures

    Sedimentological evidence for pronounced glacial‐interglacial climate fluctuations in NE Tibet in the latest Pliocene to early Pleistocene

    Get PDF
    The intensification of Northern Hemisphere glaciation (iNHG) and uplift of the Tibetan Plateau have been argued to be among the main drivers of climate change in midlatitude Central Asia during the Pliocene/Pleistocene. While most proxy records that support this hypothesis are from regions outside the Tibetan Plateau (such as from the Chinese Loess Plateau), detailed paleoclimatic information for the plateau itself during that time has yet remained elusive. Here we present a temporally highly resolved (~500 years) sedimentological record from the Qaidam Basin situated on the northeastern Tibetan Plateau that shows pronounced glacial‐interglacial climate variability during the interval from 2.7 to 2.1 Ma. Glacial (interglacial) intervals are generally characterized by coarser (finer) grain size, minima (maxima) in organic matter content, and maxima (minima) in carbonate content. Comparison of our results with Earth's orbital parameters and proxy records from the Chinese Loess Plateau suggests that the observed climate fluctuations were mainly driven by changes in the Siberian High/East Asian winter monsoon system as a response to the iNHG. They are further proposed to be enhanced by the topography of the Tibetan Plateau and its impact on the position and intensity of the westerlies

    Determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method in combination with magnetic spectrometers

    Get PDF
    The current work presents the determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method, in combination with spectrometers for ion identification, normalizing the intensity of the peaks by the ions detected in the spectrometer as a valid technique that produces results comparable to the ones obtained by the conventional shifted-to-unsifted peak ratio method. The technique has been validated using data measured with the γ \gamma -ray array AGATA, the PRISMA spectrometer and the Cologne plunger setup. In this paper a test performed with the AGATA-PRISMA setup at LNL and the advantages of this new approach with respect to the conventional Recoil Distance Doppler Shift Method are discussed

    Shape and structure of N=Z 64Ge; Electromagnetic transition rates from the application of the Recoil Distance Method to knock-out reaction

    Get PDF
    Transition rate measurements are reported for the first and the second 2+ states in N=Z 64Ge. The experimental results are in excellent agreement with large-scale Shell Model calculations applying the recently developed GXPF1A interactions. Theoretical analysis suggests that 64Ge is a collective gamma-soft anharmonic vibrator. The measurement was done using the Recoil Distance Method (RDM) and a unique combination of state-of-the-art instruments at the National Superconducting Cyclotron Laboratory (NSCL). States of interest were populated via an intermediate-energy single-neutron knock-out reaction. RDM studies of knock-out and fragmentation reaction products hold the promise of reaching far from stability and providing lifetime information for excited states in a wide range of nuclei

    Lifetime determination of excited states in Cd-106

    Get PDF
    Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106 Cd. The inedium-spin states of interest were populated by the Mo-98(C-12, 4n) Cd-106 reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the Mo-96(C-13, 3n)Cd-106 reaction performed at the Institut fur Kernphysik, Universitat zu Koln. The mean lifetime of the I-pi = 2(1)(+) state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps

    Observation of isotonic symmetry for enhanced quadrupole collectivity in neutron-rich 62,64,66Fe isotopes at N=40

    Full text link
    The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutron-rich Fe isotopes up to N=40. The results are interpreted by the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N=40 as governed by the number of valence protons with respect to Z~30. The deformation suggested by the experimental data is reproduced by state-of-the-art shell calculations with a new effective interaction developed for the fpgd valence space.Comment: 4 pages, 2 figure
    corecore