24 research outputs found

    Crustal Thickness Variation Across the Sea of Marmara Region, NW Turkey: A Reflection of Modern and Ancient Tectonic Processes

    Get PDF
    The Marmara region in Turkey is an important geological setting, both from a tectonic and a seismic hazard/risk perspective. We present a new map of crustal thickness variation across this complex region to better understand the interplay of past and present tectonic processes that have formed present‐day structure. Maps of crustal thickness are created using Ps converted phases and receiver function (RF) analysis of earthquakes recorded at all publicly available seismic stations and stations in the national monitoring network (run by AFAD Disaster and Emergency Management Authority Turkey). RFs are converted from time to depth using a local 3‐D full‐waveform tomographic model and are combined in multiphase common conversion point stacks. Direct P to S converted arrivals and associated multiples are mapped to produce continuous maps of the Moho discontinuity. Results show Moho depths ranging from 26–41 km with a regional trend of westward thinning reflecting the effects of the extensional regime in western Anatolia and the neighboring Aegean Sea. The thinnest crust is observed beneath the western end of the Sea of Marmara, attributed to transtensional basin opening. A distinct region of increased crustal thickness bounded by the West Black Sea Fault in the west, and the northern strand of the North Anatolian Fault in the south, defines the ancient crustal terrane of the Istanbul Zone. Isostatic arguments indicate that the thickened crust and lower elevation in the Istanbul Zone require it to be underlain by thicker lithosphere, a conclusion that is consistent with its hypothesized origin near the Odessa shelf

    Direct Evidence of a Slow‐Slip Transient Modulating the Spatiotemporal and Frequency‐Magnitude Earthquake Distribution: Insights From the Armutlu Peninsula, Northwestern Turkey

    Get PDF
    Earthquakes and slow‐slip events interact, however, detailed studies investigating their interplay are still limited. We generate the highest resolution microseismicity catalog to date for the northern Armutlu Peninsula in a ∌1‐year period to perform a detailed seismicity distribution analysis and correlate the results with a local, geodetically observed slow‐slip transient within the same period. Seismicity shows a transition of cluster‐type behavior from swarm‐like to burst‐like, accompanied by an increasing relative proportion of clustered (non‐Poissonian) relative to background (Poissonian) seismicity and gradually decreasing b‐value as the geodetically observed slow‐slip transient ends. The observed slow‐slip transient decay correlates with gradually increasing effective‐stress‐drop values. The observed correlation between the b‐value and geodetic transient highlights the influence of aseismic deformation on seismic deformation and the impact of slow‐slip transients on local seismic hazard

    A decision support system-based procedure for evaluation and monitoring of protected areas sustainability for the Mediterranean region

    Get PDF
    WOS: 000297078900015Despite common acknowledgement of the value of protected areas as instruments in ensuring sustainability, and their promotion for the achievement of policies on halting the loss of biodiversity, there is no common approach today for monitoring and evaluating them. This paper presents a novel integrated nature conservation management procedure developed to monitor and evaluate the sustainability of Mediterranean protected areas. This procedure was successfully implemented and formally evaluated by protected area managers in six Mediterranean countries, results of which are presented here together with an overview of the web-based Decision Support System (DSS) developed to facilitate its wide adoption. The DSS and procedure has been designed and evaluated by managers as a useful tool, which facilitates and provides needed procedural guidance for protected area monitoring whilst minimizing input requirements to do so. The procedure and DSS were developed following a review of existing protected area assessment tools and a detailed primary investigation of the needs and capacity of its intended users. Essentially, the procedure and DSS guides provide the facilities for protected area managers, in following a participatory approach to develop a context-specific sustainability monitoring strategy, for their protected area. Consequently, the procedure is, by design, participatory, context specific, holistic and relevant to protected area management and institutional procedures. The procedure was piloted and formally evaluated in Greece, Italy, Turkey, Egypt, Malta and Cyprus. Feedback collected from the pilot evaluations is also summarised herein.INTERREG III B [A.1.222 INNOVA]This research was funded under INTERREG III B Programme 'Archimed' A.1.222 INNOVA Project. The authors would like to acknowledge the contribution and input of the partners, protected area authorities, stakeholders and local communities. Special thanks to the University of Bari, the Polytechnic of Bari, Apulian Ministry of Environment, University of Lecce, Maltese Ministry of Rural Affairs and Environment, University of Malta, Agricultural Research Institute of Cyprus, Prefecture of Chania, Egyptian Desert Research Center, Palestinian Ministry of Agriculture, Palestinian National Authority, and Al Quads University

    GONAF – the borehole Geophysical Observatory at the North Anatolian Fault in the eastern Sea of Marmara

    Get PDF
    The Marmara section of the North Anatolian Fault Zone (NAFZ) runs under water and is located less than 20 km from the 15-million-person population center of Istanbul in its eastern portion. Based on historical seismicity data, recurrence times forecast an impending magnitude M>7 earthquake for this region. The permanent GONAF (Geophysical Observatory at the North Anatolian Fault) has been installed around this section to help capture the seismic and strain activity preceding, during, and after such an anticipated event

    Implementation of context-based vocabulary teaching method in Turkish language instruction for foreigners

    No full text

    Direct Evidence of a Slow‐Slip Transient Modulating the Spatiotemporal and Frequency‐Magnitude Earthquake Distribution: Insights From the Armutlu Peninsula, Northwestern Turkey

    No full text
    Earthquakes and slow‐slip events interact, however, detailed studies investigating their interplay are still limited. We generate the highest resolution microseismicity catalog to date for the northern Armutlu Peninsula in a ∌1‐year period to perform a detailed seismicity distribution analysis and correlate the results with a local, geodetically observed slow‐slip transient within the same period. Seismicity shows a transition of cluster‐type behavior from swarm‐like to burst‐like, accompanied by an increasing relative proportion of clustered (non‐Poissonian) relative to background (Poissonian) seismicity and gradually decreasing b‐value as the geodetically observed slow‐slip transient ends. The observed slow‐slip transient decay correlates with gradually increasing effective‐stress‐drop values. The observed correlation between the b‐value and geodetic transient highlights the influence of aseismic deformation on seismic deformation and the impact of slow‐slip transients on local seismic hazard.Plain Language Summary: Seismic and aseismic slip on faults can change the stress state in the crust and affect the recurrence time of earthquakes. Observations of how earthquakes and aseismic fault slip influence each other are limited because of the dearth of synchronous high‐resolution seismological and geodetic data. Here we use high‐resolution earthquake data in the northern Armutlu Peninsula along the Marmara seismic gap of the North Anatolian Fault (Turkey) to correlate the earthquake distribution with a local slow‐slip transient that occurred in the same period. We find that the slow‐slip transient modulates the spatiotemporal and frequency‐magnitude evolution of earthquakes, which highlights the influence of slow fault creep on fast fault slip. Our study demonstrates the importance of considering slow‐slip transients for seismic hazard assessment.Key Points: Seismicity analysis suggests that both external and internal forcing drive deformation in the Armutlu Peninsula. Temporal correlation between a slow‐slip transient and seismic b‐value highlights interactions between aseismic and seismic deformation. Slow‐slip transients modulate the frequency‐magnitude and spatiotemporal earthquake distribution.VW momentum grantHelmotz Association Young Investigator Group http://dx.doi.org/10.13039/501100009318Helmholtz‐Zentrum Potsdam—Deutsches GeoForschungs Zentrum GFZ, GIPP http://dx.doi.org/10.13039/50110001095

    The Effect of Marshallian and Jacobian Knowledge Spillovers on Jobs in the Solar, Wind and Energy Efficiency Sector

    No full text
    The purpose of this paper is to establish if Marshallian and Jacobian knowledge spillovers affect job creation in the green energy sector. Whether these two effects exist is important for the number of jobs created in related fields and jobs pushed away in other sectors. In the analysis, the production efficiency, in terms of jobs and job spillovers, from inventions in solar, wind and energy efficiency, is explored through data envelopment analysis (DEA), based on the Malmquist productivity index, and tobit regression. A panel dataset of American and European firms over the period of 2002–2017 is used. The contribution to the literature is to show the role of the spillovers from the same technology sector (Marshallian externalities), and of the spillovers from more diversified activity (Jacobian externalities). Since previous empirical evidence concerning the innovation effects on the production efficiency is yet weak, the paper attempts to bridge this gap. The empirical findings suggest negative Marshallian externalities, while Jacobian externalities have no statistical impact on the job creation process. The findings are of strategic importance for governments who are developing industrial strategies for renewable energy

    Crustal Thickness Variation Across the Sea of Marmara Region, NW Turkey: A Reflection of Modern and Ancient Tectonic Processes

    Get PDF
    The Marmara region in Turkey is an important geological setting, both from a tectonic and a seismic hazard/risk perspective. We present a new map of crustal thickness variation across this complex region to better understand the interplay of past and present tectonic processes that have formed present-day structure. Maps of crustal thickness are created usingPsconverted phases and receiver function (RF) analysis of earthquakes recorded at all publicly available seismic stations and stations in the national monitoring network (run by AFAD Disaster and Emergency Management Authority Turkey). RFs are converted from time to depth using a local 3-D full-waveform tomographic model and are combined in multiphase common conversion point stacks. DirectPtoSconverted arrivals and associated multiples are mapped to produce continuous maps of the Moho discontinuity. Results show Moho depths ranging from 26-41 km with a regional trend of westward thinning reflecting the effects of the extensional regime in western Anatolia and the neighboring Aegean Sea. The thinnest crust is observed beneath the western end of the Sea of Marmara, attributed to transtensional basin opening. A distinct region of increased crustal thickness bounded by the West Black Sea Fault in the west, and the northern strand of the North Anatolian Fault in the south, defines the ancient crustal terrane of the Istanbul Zone. Isostatic arguments indicate that the thickened crust and lower elevation in the Istanbul Zone require it to be underlain by thicker lithosphere, a conclusion that is consistent with its hypothesized origin near the Odessa shelf
    corecore