9 research outputs found

    Data-driven discrimination: a new challenge for civil society

    Get PDF
    Data-driven technologies have been a transformative force in society. However, while such innovations are often viewed as a positive development, discriminatory biases embedded in these technologies can serve to compound problems for society's more vulnerable groups. Having recently published a report on automated discrimination in data-driven systems, Jędrzej Niklas and Seeta Peña Gangadharan explain how algorithms discriminate, why this raises concerns for civil society organisations across Europe, and what resources and support are needed by digital rights advocates and anti-discrimination groups in order to combat this problem

    The Comet Interceptor Mission

    Get PDF
    Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms−1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule

    The challenges of the Dust-Field-Plasma (DFP) instrument onboard ESA Comet Interceptor mission

    No full text
    International audienceThe flyby of a dynamically new comet by ESA-F1 Comet Interceptor spacecraft offers unique multi-point opportunities for studying the comet's dusty and ionised cometary environment in ways that were not possible with previous missions, including Rosetta. As Comet Interceptor is an F-class mission, the payload is limited in terms of mass, power, and heritage. Most in situ science sensors therefore have been tightly integrated into a single Dust-Field-Plasma (DFP) instrument on the main spacecraft A and on the ESA sub-spacecraft B2, while there is a Plasma Package suite on the JAXA second sub-spacecraft B1. The advantage of tight integration is an important reduction of mass, power, and especially complexity, by keeping the electrical and data interfaces of the sensors internal to the DFP instrument.The full diagnostics located on the board of the 3 spacecrafts will allow to modeling the comet environment and described the complex physical processes around the comet and on their surface including also the description of wave particle interaction in dusty cometary plasma. The full set of DFP instrument on board the Comet Interceptor spacecraft will allow to model the comet plasma environment and its interaction with the solar wind. It will also allow to describe the complex physical processes taking place including wave particle interaction in dusty cometary plasma . On spacecraft A, DFP consists of a magnetometer, a Langmuir and multi impedance probe/electric field instrument, an ion and an electron analyzer, a dust sensor, and a central data processing unit and electronics box. On spacecraft B2, the instrumentation is limited to a magnetometer and a dust sensor. The choice of sensors and their capabilities are such that it maximizes synergies and complementarities. To give one example: While the dust instrument aims at establishing the dust spectrum for millimeter to micrometer sized particles, the Langmuir probes aided by the data processing unit will analyze the signatures of micrometer to nanometer sized particles.Moreover, unique multi-point measurements will be obtained from magnetometers on the three spacecraft, from dust sensors on A and B2, and from ion measurements on A and B1.The tight integration of dust-field-plasma sensor hardware and science targets embodied by DFP promises an optimized science return for the available resources

    Hello darkness, my old friend: 3-Ketoacyl-Coenzyme A Synthase4 is a branch point in the regulation of triacylglycerol synthesis in Arabidopsis by re-channeling fatty acids under carbon starvation

    No full text
    Abstract Due to their sessile lifestyle, plants have evolved unique mechanisms to deal with environmental challenges. Under stress, plant lipids are important as alternative sources of carbon and energy when sugars or starch are limited. Here, we applied combined heat and darkness and extended darkness to a panel of ∼ 300 Arabidopsis accessions to study lipid remodeling under carbon starvation. Natural allelic variation at 3-KETOACYL-COENZYME A SYNTHASE4 (KCS4), a gene encoding for an enzyme involved fatty-acid elongation, underlies a differential accumulation of polyunsaturated triacylglycerols (TAGs) under stress. Ectopic expression in yeast and plants proved that KCS4 is a functional enzyme localized in the ER with specificity for C22 and C24 saturated acyl-CoA. Loss-of-function mutants and transient overexpression in planta revealed the role of KCS4 alleles in TAG synthesis and biomass accumulation. The region harboring KCS4 is under high selective pressure. Furthermore, allelic variation at KCS4 correlated with environmental parameters from the locales of Arabidopsis accessions. Our results provide evidence that KCS4 plays a decisive role in the subsequent fate of fatty acids released from chloroplast-membrane lipids under carbon starvation. This work sheds light on both plant response mechanisms to abiotic stress and the evolutionary events shaping the lipidome under carbon starvation. One sentence summary Natural variation at KCS4 underlies a differential accumulation of polyunsaturated triacylglycerols, by acting as a regulatory branch point in the fate of fatty acids under carbon starvation

    Hello darkness, my old friend: 3-KETOACYL-COENZYME A SYNTHASE4 is a branch point in the regulation of triacylglycerol synthesis in Arabidopsis thaliana

    No full text
    Abstract Plant lipids are important as alternative sources of carbon and energy when sugars or starch are limited. Here, we applied combined heat and darkness or extended darkness to a panel of ∼300 Arabidopsis (Arabidopsis thaliana) accessions to study lipid remodeling under carbon starvation. Natural allelic variation at 3-KETOACYL-COENZYME A SYNTHASE4 (KCS4), a gene encoding an enzyme involved in very long chain fatty acid (VLCFA) synthesis, underlies the differential accumulation of polyunsaturated triacylglycerols (puTAGs) under stress. Ectopic expression of KCS4 in yeast and plants proved that KCS4 is a functional enzyme localized in the endoplasmic reticulum with specificity for C22 and C24 saturated acyl-CoA. Allelic mutants and transient overexpression in planta revealed the differential role of KCS4 alleles in VLCFA synthesis and leaf wax coverage, puTAG accumulation, and biomass. Moreover, the region harboring KCS4 is under high selective pressure and allelic variation at KCS4 correlates with environmental parameters from the locales of Arabidopsis accessions. Our results provide evidence that KCS4 plays a decisive role in the subsequent fate of fatty acids released from chloroplast membrane lipids under carbon starvation. This work sheds light on both plant response mechanisms and the evolutionary events shaping the lipidome under carbon starvation
    corecore