233 research outputs found

    FungiDB: an integrated functional genomics database for fungi

    Get PDF
    FungiDB (http://FungiDB.org) is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org). FungiDB uses the same infrastructure and user interface as EuPathDB, which allows for sophisticated and integrated searches to be performed using an intuitive graphical system. The current release of FungiDB contains genome sequence and annotation from 18 species spanning several fungal classes, including the Ascomycota classes, Eurotiomycetes, Sordariomycetes, Saccharomycetes and the Basidiomycota orders, Pucciniomycetes and Tremellomycetes, and the basal β€˜Zygomycete’ lineage Mucormycotina. Additionally, FungiDB contains cell cycle microarray data, hyphal growth RNA-sequence data and yeast two hybrid interaction data. The underlying genomic sequence and annotation combined with functional data, additional data from the FungiDB standard analysis pipeline and the ability to leverage orthology provides a powerful resource for in silico experimentation

    Aspergillus Genomes and the Aspergillus Cloud

    Get PDF
    Aspergillus Genomes is a public resource for viewing annotated genes predicted by various Aspergillus sequencing projects. It has arisen from the union of two significant resources: the Aspergillus/Aspergillosis website and the Central Aspergillus Data REpository (CADRE). The former has primarily served the medical community, providing information about Aspergillus and associated diseases to medics, patients and scientists; the latter has focused on the fungal genomic community, providing a central repository for sequences and annotation extracted from Aspergillus Genomes. By merging these databases, genomes benefit from extensive cross-linking with medical information to create a unique resource, spanning genomics and clinical aspects of the genus. Aspergillus Genomes is accessible from http://www.aspergillus-genomes.org.uk

    Molecular characterization of an adaptive response to alkylating agents in the opportunistic pathogen Aspergillus fumigatus.

    Get PDF
    An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O(6)-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O(6)-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system

    Transcriptional and Proteomic Analysis of the Aspergillus fumigatus Ξ”prtT Protease-Deficient Mutant

    Get PDF
    Aspergillus fumigatus is the most common opportunistic mold pathogen of humans, infecting immunocompromised patients. The fungus invades the lungs and other organs, causing severe damage. Penetration of the pulmonary epithelium is a key step in the infectious process. A. fumigatus produces extracellular proteases to degrade the host structural barriers. The A. fumigatus transcription factor PrtT controls the expression of multiple secreted proteases. PrtT shows similarity to the fungal Gal4-type Zn(2)-Cys(6) DNA-binding domain of several transcription factors. In this work, we further investigate the function of this transcription factor by performing a transcriptional and a proteomic analysis of the Ξ”prtT mutant. Unexpectedly, microarray analysis revealed that in addition to the expected decrease in protease expression, expression of genes involved in iron uptake and ergosterol synthesis was dramatically decreased in the Ξ”prtT mutant. A second finding of interest is that deletion of prtT resulted in the upregulation of four secondary metabolite clusters, including genes for the biosynthesis of toxic pseurotin A. Proteomic analysis identified reduced levels of three secreted proteases (ALP1 protease, TppA, AFUA_2G01250) and increased levels of three secreted polysaccharide-degrading enzymes in the Ξ”prtT mutant possibly in response to its inability to derive sufficient nourishment from protein breakdown. This report highlights the complexity of gene regulation by PrtT, and suggests a potential novel link between the regulation of protease secretion and the control of iron uptake, ergosterol biosynthesis and secondary metabolite production in A. fumigatus

    Genetic Diversity and Microevolution of Burkholderia pseudomallei in the Environment

    Get PDF
    The soil dwelling Gram-negative bacterium Burkholderia pseudomallei is the cause of melioidosis, a serious human infection that occurs in Southeast Asia and northern Australia. The purpose of this study was to evaluate the population genetic structure of B. pseudomallei in the environment. To achieve this, we undertook soil sampling and culture for the presence of B. pseudomallei in 100 equally spaced points within an area of disused land in northeast Thailand, and undertook detailed genotyping of primary plate colonies isolated from three independent sampling points. Our results demonstrated that multiple B. pseudomallei genotypes were present within a single soil sample, and that different genotypes were present at independent but nearby sampling points. The B. pseudomallei genetic population was unevenly distributed within a given sample, with a predominant genotype co-existing with several genotypes present as a minority population. We discuss the implications of this structuring of genotypic frequency in terms of micro-evolutionary dynamics and ecology, and how our results may inform future sampling strategies

    Sequencing of \u3ci\u3eAspergillus nidulans\u3c/i\u3e and comparative analysis with \u3ci\u3eA. fumigatus\u3c/i\u3e and \u3ci\u3eA. oryzae\u3c/i\u3e

    Get PDF
    The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution. Here we report the genome sequence of the model organism Aspergillus nidulans, and a comparative study with Aspergillus fumigatus, a serious human pathogen, and Aspergillus oryzae, used in the production of sake, miso, and soy sauce. Our analysis of genome structure provided a quantitative evaluation of forces driving long-term eukaryotic genome evolution. It also led to an experimentally validated model of mating-type locus evolution, suggesting the potential for sexual reproduction in A. fumigatus and A. oryzae. Our analysis of sequence conservation revealed over 5,000 non-coding regions actively conserved across all three species. Within these regions, we identified potential functional elements including a previously uncharacterized TPP riboswitch and motifs suggesting regulation in filamentous fungi by Puf family genes. We further obtained comparative and experimental evidence indicating widespread translational regulation by upstream open reading frames. These results enhance our understanding of these widely studied fungi as well as provide new insight into eukaryotic genome evolution and gene regulation. Document includes all supplementary information (820 pages). Supplementary files are also attached below as Related files. THERE IS NO SUPPLEMENTARY FILE #7. PDF file size (with supplementary files included) is 10 Mbytes. An optimized version of the ARTICLE ONLY is attached as a Related File and is 1.9 Mbytes

    Sequencing of \u3ci\u3eAspergillus nidulans\u3c/i\u3e and comparative analysis with \u3ci\u3eA. fumigatus\u3c/i\u3e and \u3ci\u3eA. oryzae\u3c/i\u3e

    Get PDF
    The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution. Here we report the genome sequence of the model organism Aspergillus nidulans, and a comparative study with Aspergillus fumigatus, a serious human pathogen, and Aspergillus oryzae, used in the production of sake, miso, and soy sauce. Our analysis of genome structure provided a quantitative evaluation of forces driving long-term eukaryotic genome evolution. It also led to an experimentally validated model of mating-type locus evolution, suggesting the potential for sexual reproduction in A. fumigatus and A. oryzae. Our analysis of sequence conservation revealed over 5,000 non-coding regions actively conserved across all three species. Within these regions, we identified potential functional elements including a previously uncharacterized TPP riboswitch and motifs suggesting regulation in filamentous fungi by Puf family genes. We further obtained comparative and experimental evidence indicating widespread translational regulation by upstream open reading frames. These results enhance our understanding of these widely studied fungi as well as provide new insight into eukaryotic genome evolution and gene regulation. Document includes all supplementary information (820 pages). Supplementary files are also attached below as Related files. THERE IS NO SUPPLEMENTARY FILE #7. PDF file size (with supplementary files included) is 10 Mbytes. An optimized version of the ARTICLE ONLY is attached as a Related File and is 1.9 Mbytes

    Sub-Telomere Directed Gene Expression during Initiation of Invasive Aspergillosis

    Get PDF
    Aspergillus fumigatus is a common mould whose spores are a component of the normal airborne flora. Immune dysfunction permits developmental growth of inhaled spores in the human lung causing aspergillosis, a significant threat to human health in the form of allergic, and life-threatening invasive infections. The success of A. fumigatus as a pathogen is unique among close phylogenetic relatives and is poorly characterised at the molecular level. Recent genome sequencing of several Aspergillus species provides an exceptional opportunity to analyse fungal virulence attributes within a genomic and evolutionary context. To identify genes preferentially expressed during adaptation to the mammalian host niche, we generated multiple gene expression profiles from minute samplings of A. fumigatus germlings during initiation of murine infection. They reveal a highly co-ordinated A. fumigatus gene expression programme, governing metabolic and physiological adaptation, which allows the organism to prosper within the mammalian niche. As functions of phylogenetic conservation and genetic locus, 28% and 30%, respectively, of the A. fumigatus subtelomeric and lineage-specific gene repertoires are induced relative to laboratory culture, and physically clustered genes including loci directing pseurotin, gliotoxin and siderophore biosyntheses are a prominent feature. Locationally biased A. fumigatus gene expression is not prompted by in vitro iron limitation, acid, alkaline, anaerobic or oxidative stress. However, subtelomeric gene expression is favoured following ex vivo neutrophil exposure and in comparative analyses of richly and poorly nourished laboratory cultured germlings. We found remarkable concordance between the A. fumigatus host-adaptation transcriptome and those resulting from in vitro iron depletion, alkaline shift, nitrogen starvation and loss of the methyltransferase LaeA. This first transcriptional snapshot of a fungal genome during initiation of mammalian infection provides the global perspective required to direct much-needed diagnostic and therapeutic strategies and reveals genome organisation and subtelomeric diversity as potential driving forces in the evolution of pathogenicity in the genus Aspergillus

    A Modular BAM Complex in the Outer Membrane of the Ξ±-Proteobacterium Caulobacter crescentus

    Get PDF
    Mitochondria are organelles derived from an intracellular α-proteobacterium. The biogenesis of mitochondria relies on the assembly of β-barrel proteins into the mitochondrial outer membrane, a process inherited from the bacterial ancestor. Caulobacter crescentus is an α-proteobacterium, and the BAM (β-barrel assembly machinery) complex was purified and characterized from this model organism. Like the mitochondrial sorting and assembly machinery complex, we find the BAM complex to be modular in nature. A ∼150 kDa core BAM complex containing BamA, BamB, BamD, and BamE associates with additional modules in the outer membrane. One of these modules, Pal, is a lipoprotein that provides a means for anchorage to the peptidoglycan layer of the cell wall. We suggest the modular design of the BAM complex facilitates access to substrates from the protein translocase in the inner membrane

    A protease-based biosensor for the detection of schistosome cercariae

    Get PDF
    Parasitic diseases affect millions of people worldwide, causing debilitating illnesses and death. Rapid and cost-effective approaches to detect parasites are needed, especially in resource-limited settings. A common signature of parasitic diseases is the release of specific proteases by the parasites at multiple stages during their life cycles. To this end, we engineered several modular Escherichia coli and Bacillus subtilis whole-cell-based biosensors which incorporate an interchangeable protease recognition motif into their designs. Herein, we describe how several of our engineered biosensors have been applied to detect the presence and activity of elastase, an enzyme released by the cercarial larvae stage of Schistosoma mansoni. Collectively, S. mansoni and several other schistosomes are responsible for the infection of an estimated 200 million people worldwide. Since our biosensors are maintained in lyophilised cells, they could be applied for the detection of S. mansoni and other parasites in settings without reliable cold chain access
    • …
    corecore