107 research outputs found
Benchmark instance indicators and computational comparison of methods
chapter 7This chapter is devoted to extensive computational experiments on the resource-constrained project scheduling problem. Its objective is twofold. First, a selection of representative exact and heuristic methods among the ones presented in the previous chapters are tested and compared under a common experimental framework on four different instance sets. Second, classical and new instance difficulty indicators are evaluated through the experiments and their discriminating power is discussed
A Temporal Map in Geostationary Orbit: The Cover Etching on the EchoStar XVI Artifact
Geostationary satellites are unique among orbital spacecraft in that they
experience no appreciable atmospheric drag. After concluding their respective
missions, geostationary spacecraft remain in orbit virtually in perpetuity. As
such, they represent some of human civilization's longest lasting artifacts.
With this in mind, the EchoStar XVI satellite, to be launched in fall 2012,
will play host to a time capsule intended as a message for the deep future.
Inspired in part by the Pioneer Plaque and Voyager Golden Records, the EchoStar
XVI Artifact is a pair of gold-plated aluminum jackets housing a small silicon
disc containing one hundred photographs. The Cover Etching, the subject of this
paper, is etched onto one of the two jackets. It is a temporal map consisting
of a star chart, pulsar timings, and other information describing the epoch
from which EchoStar XVI came. The pulsar sample consists of 13 rapidly rotating
objects, 5 of which are especially stable, having spin periods < 10 ms and
extremely small spindown rates.
In this paper, we discuss our approach to the time map etched onto the cover
and the scientific data shown on it; and we speculate on the uses that future
scientists may have for its data. The other portions of the EchoStar XVI
Artifact will be discussed elsewhere.Comment: Accepted for publication in Astronomical Journa
Square root and division elimination in PVS
International audienceIn this paper we present a new strategy for PVS that imple- ments a square root and division elimination in order to use automatic arithmetic strategies that were not able to deal with these operations in the ﰁrst place. This strategy relies on a PVS formalization of the square root and division elimination and deep embedding of PVS expressions inside PVS. Therefore using computational reﰂection and symbolic com- putation we are able to automatically transform expressions into division and square root free ones before using these decision procedures
Tidal torques. A critical review of some techniques
We point out that the MacDonald formula for body-tide torques is valid only
in the zeroth order of e/Q, while its time-average is valid in the first order.
So the formula cannot be used for analysis in higher orders of e/Q. This
necessitates corrections in the theory of tidal despinning and libration
damping.
We prove that when the inclination is low and phase lags are linear in
frequency, the Kaula series is equivalent to a corrected version of the
MacDonald method. The correction to MacDonald's approach would be to set the
phase lag of the integral bulge proportional to the instantaneous frequency.
The equivalence of descriptions gets violated by a nonlinear
frequency-dependence of the lag.
We explain that both the MacDonald- and Darwin-torque-based derivations of
the popular formula for the tidal despinning rate are limited to low
inclinations and to the phase lags being linear in frequency. The
Darwin-torque-based derivation, though, is general enough to accommodate both a
finite inclination and the actual rheology.
Although rheologies with Q scaling as the frequency to a positive power make
the torque diverge at a zero frequency, this reveals not the impossible nature
of the rheology, but a flaw in mathematics, i.e., a common misassumption that
damping merely provides lags to the terms of the Fourier series for the tidal
potential. A hydrodynamical treatment (Darwin 1879) had demonstrated that the
magnitudes of the terms, too, get changed. Reinstating of this detail tames the
infinities and rehabilitates the "impossible" scaling law (which happens to be
the actual law the terrestrial planets obey at low frequencies).Comment: arXiv admin note: sections 4 and 9 of this paper contain substantial
text overlap with arXiv:0712.105
Pulmonary Abnormalities and Carotid Atherosclerosis in Ex-Smokers without Airflow Limitation.
Abstract It is well-established that COPD patients have a burden of vascular disease that cannot be fully-explained by smoking history but the mechanistic links between atherosclerosis and pulmonary disease in COPD patients are not well-understood. Moreover, in ex-smokers without symptoms or other evidence of COPD, subclinical pulmonary and vascular disease, although potentially present, has not been described or evaluated. Hence our aim was to use sensitive three-dimensional (3D) pulmonary and carotid imaging to quantify pulmonary airway/parenchyma abnormalities and atherosclerosis in ex-smokers without airflow limitation or symptoms consistent with COPD. We evaluated 61 subjects without airflow limitation including 34 never- (72 ± 6 years) and 27 ex-smokers (73 ± 9 years), who provided written informed consent to spirometry, plethysmography, (3)He magnetic resonance imaging (MRI) and carotid ultrasound (US) and, for ex-smokers alone, thoracic X-ray computed tomography (CT). Ex-smokers had significantly greater (3)He ventilation defect percent (VDP = 7%, p = 0.001) and carotid total plaque volume (TPV = 250 mm(3), p = 0.002) than never-smokers, although there were no significant differences for spirometry or plethysmography, and CT airway and emphysema measurements were normal. There were univariate relationships for (3)He VDP with carotid intima media thickness (IMT, r = 0.42, p = 0.004), TPV (r = 0.41, p = 0.006) and vessel wall volume (VWV, r = 0.40, p = 0.007). Multivariate models that included age, BMI, FEV1, DLCO and VDP showed that only VDP significantly predicted IMT (β = 0.41, p = 0.001), VWV (β = 0.45, p = 0.003) and TPV (β = 0.38, p = 0.005). In summary, there was imaging evidence of mild airways disease and carotid plaque burden that were related and significantly greater in ex-smokers without airflow limitation than in never-smokers
The role of chaotic resonances in the solar system
Our understanding of the Solar System has been revolutionized over the past
decade by the finding that the orbits of the planets are inherently chaotic. In
extreme cases, chaotic motions can change the relative positions of the planets
around stars, and even eject a planet from a system. Moreover, the spin axis of
a planet-Earth's spin axis regulates our seasons-may evolve chaotically, with
adverse effects on the climates of otherwise biologically interesting planets.
Some of the recently discovered extrasolar planetary systems contain multiple
planets, and it is likely that some of these are chaotic as well.Comment: 28 pages, 9 figure
Needle & knot : binder boilerplate tied up
To lighten the burden of programming language mechanization, many approaches have been developed that tackle the substantial boilerplate which arises from variable binders. Unfortunately, the existing approaches are limited in scope. They typically do not support complex binding forms (such as multi-binders) that arise in more advanced languages, or they do not tackle the boilerplate due to mentioning variables and binders in relations. As a consequence, the human mechanizer is still unnecessarily burdened with binder boilerplate and discouraged from taking on richer languages.
This paper presents Knot, a new approach that substantially extends the support for binder boilerplate. Knot is a highly expressive language for natural and concise specification of syntax with binders. Its meta-theory constructively guarantees the coverage of a considerable amount of binder boilerplate for well-formed specifications, including that for well-scoping of terms and context lookups. Knot also comes with a code generator, Needle, that specializes the generic boilerplate for convenient embedding in COQ and provides a tactic library for automatically discharging proof obligations that frequently come up in proofs of weakening and substitution lemmas of type-systems.
Our evaluation shows, that Needle & Knot significantly reduce the size of language mechanizations (by 40% in our case study). Moreover, as far as we know, Knot enables the most concise mechanization of the POPLmark Challenge (1a + 2a) and is two-thirds the size of the next smallest. Finally, Knot allows us to mechanize for instance dependentlytyped languages, which is notoriously challenging because of dependent contexts and mutually-recursive sorts with variables
A seven-planet resonant chain in TRAPPIST-1
The TRAPPIST-1 system is the first transiting planet system found orbiting an ultra-cool dwarf star1. At least seven planets similar to Earth in radius were previously found to transit this host star2. Subsequently, TRAPPIST-1 was observed as part of the K2 mission and, with these new data, we report the measurement of an 18.77 d orbital period for the outermost transiting planet, TRAPPIST-1h, which was unconstrained until now. This value matches our theoretical expectations based on Laplace relations3 and places TRAPPIST-1h as the seventh member of a complex chain, with three-body resonances linking every member. We find that TRAPPIST-1h has a radius of 0.727 R⊕ and an equilibrium temperature of 169 K. We have also measured the rotational period of the star at 3.3 d and detected a number of flares consistent with a low-activity, middle-aged, late M dwarf
- …