151 research outputs found

    The fate of nitrogen during agricultural intensification in East Africa: nitrogen budgets in contrasting agroecosystems

    Get PDF
    Open Access ArticleThe intensification of agricultural systems in sub-Saharan Africa (SSA) is necessary to reduce poverty and improve food security, but increased nutrient applications in smallholder systems could have negative consequences for water quality, greenhouse gas emissions, and air quality. We tracked nitrogen (N) inputs and measured maize (Zea mays) biomass, grain yields, N leaching, and nitric oxide (NO) and nitrous oxide fluxes from a clayey soil in Yala, Kenya and a sandy soil in Tumbi, Tanzania, with application rates of 0, 50, 75, 100, 150, and 200 kg N ha−1 yr−1 over two cropping seasons. Maize yields were 4.5 times higher in Yala than Tumbi, but yields plateaued at both sites with fertilizer applications at or above 100 kg N ha−1 yr−1. Partial N budgets in Yala were typically negative, meaning more N was exported in maize biomass plus grain or lost from the system than was added in fertilizer. In Tumbi, N budgets were negative at lower fertilizer levels but positive at higher fertilizer levels. At both sites most (96%) of the N was lost through maize biomass/grain removal and N leaching. Fertilizer additions at or less than 50 kg N ha−1 yr−1 on these two contrasting sites resulted in minor gaseous N losses, and fertilizer additions less than 200 kg N ha−1 yr−1 caused relatively little change to N leaching losses. This indicates that the modest increases in fertilizer use required to improve maize yields will not greatly increase cropland N losses. Plain Language Summary Crop yields in smallholder agriculture across sub-Saharan Africa are low but could be increased by greater applications of nitrogen fertilizer. However, greater use of nitrogen fertilizer creates potential for higher emissions of nitrogen trace gases and nitrogen leaching losses. This study added nitrogen fertilizer doses (0, 50, 75, 100, 150, and 200 kg of nitrogen per hectare) to maize cropland in two smallholder farming sites, one on clay-rich soils in Kenya and one on sandy soils in Tanzania. It tracked removal of nitrogen fertilizer via harvested maize and losses as nitrous oxide (a greenhouse gas), NO (an air pollutant), and leaching of soil solution. Yields were 4.5 times higher on the clayey soil; yields plateaued at nitrogen application above 100 kg per hectare. Leaching losses far exceeded gaseous losses at both sites: 96% of nitrogen was removed in harvested crops and soil solution. Nitrogen additions at or below 50 kg of nitrogen per hectare led to minor increases in gaseous nitrogen losses and additions less than 200 kg of nitrogen per hectare did not increase soil solution losses. This indicates that the modest increases in fertilizer use required to improve maize yields will not greatly increase cropland nitrogen losses

    An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR)

    Get PDF
    The Amazon basin is likely to be increasingly affected by environmental changes: higher temperatures, changes in precipitation, CO2 fertilization and habitat fragmentation. To examine the important ecological and biogeochemical consequences of these changes, we are developing an international network, RAINFOR, which aims to monitor forest biomass and dynamics across Amazonia in a co-ordinated fashion in order to understand their relationship to soil and climate. The network will focus on sample plots established by independent researchers, some providing data extending back several decades. We will also conduct rapid transect studies of poorly monitored regions. Field expeditions analysed local soil and plant properties in the first phase (2001–2002). Initial results suggest that the network has the potential to reveal much information on the continental-scale relations between forest and environment. The network will also serve as a forum for discussion between researchers, with the aim of standardising sampling techniques and methodologies that will enable Amazonian forests to be monitored in a coherent manner in the coming decades

    The Changing Amazon Hydrological Cycle—Inferences From Over 200 Years of Tree‐Ring Oxygen Isotope Data

    Get PDF
    Changes to the Amazon hydrological cycle have important consequences for world's largest tropical forest, and the biodiversity it contains. However, a scarcity of long-term climate data in the region makes it hard to contextualize recent observed changes in Amazon hydrology. Here, we explore to what extent tree-ring oxygen isotope (δ18OTR) chronologies can inform us about hydrological changes in the Amazon over the past two centuries. Two δ18OTR records from northern Bolivia and the Ecuadorian Andes are presented. The Ecuador record spans 1799–2012 (n = 16 trees) and the Bolivia record spans 1860–2014 (n = 32 trees), making them the longest δ18OTR records from the Amazon, and among the most highly-replicated δ18OTR records from the tropics to date. The two chronologies correlate well at interannual and decadal timescales, despite coming from sites more than 1,500 km apart. Both δ18OTR records are strongly related to interannual variation in Amazon River discharge measured at Óbidos, and accumulated upwind precipitation, suggesting a common climatic driver. In both records a strong increase in δ18OTR was observed up until approximately 1950, consistent with positive trends in the few other existing δ18O proxy records from across the Amazon. Considering all possible drivers of this long-term increase, a reduction in rainout fraction over the basin driven by rising sea surface temperatures in the North Atlantic is suggested as the most likely cause. The upward trend in δ18OTR reverses over the past 1–2 decades, consistent with the observed strengthening of the Amazon hydrological cycle since approximately 1990

    Methods to estimate aboveground wood productivity from long-term forest inventory plots

    Get PDF
    Forest inventory plots are widely used to estimate biomass carbon storage and its change over time. While there has been much debate and exploration of the analytical methods for calculating biomass, the methods used to determine rates of wood production have not been evaluated to the same degree. This affects assessment of ecosystem fluxes and may have wider implications if inventory data are used to parameterise biospheric models, or scaled to large areas in assessments of carbon sequestration. Here we use a dataset of 35 long-term Amazonian forest inventory plots to test different methods of calculating wood production rates. These address potential biases associated with three issues that routinely impact the interpretation of tree measurement data: (1) changes in the point of measurement (POM) of stem diameter as trees grow over time; (2) unequal length of time between censuses; and (3) the treatment of trees that pass the minimum diameter threshold (“recruits”). We derive corrections that control for changing POM height, that account for the unobserved growth of trees that die within census intervals, and that explore different assumptions regarding the growth of recruits during the previous census interval. For our dataset we find that annual aboveground coarse wood production (AGWP; in Mg ha−1 year−1 of dry matter) is underestimated on average by 9.2% if corrections are not made to control for changes in POM height. Failure to control for the length of sampling intervals results in a mean underestimation of 2.7% in annual AGWP in our plots for a mean interval length of 3.6 years. Different methods for treating recruits result in mean differences of up to 8.1% in AGWP. In general, the greater the length of time a plot is sampled for and the greater the time elapsed between censuses, the greater the tendency to underestimate wood production. We recommend that POM changes, census interval length, and the contribution of recruits should all be accounted for when estimating productivity rates, and suggest methods for doing this.European UnionUK Natural Environment Research CouncilGordon and Betty Moore FoundationCASE sponsorship from UNEP-WCMCRoyal Society University Research FellowshipERC Advanced Grant “Tropical Forests in the Changing Earth System”Royal Society Wolfson Research Merit Awar

    Induction of T Lymphocytes Specific for Bovine Viral Diarrhea Virus in Calves with Maternal Antibody

    Get PDF
    Passive antibody to bovine viral diarrhea virus (BVDV) acquired through colostrum intake may interfere with the development of a protective immune response by calves to this virus. The objective of this study was to determine if calves, with a high level of maternal antibody to bovine viral diarrhea virus (BVDV), develop CD4+, CD8+, or γδ T lymphocyte responses to BVDV in the absence of a measurable humoral immune response. Colostrum or milk replacer fed calves were challenged with virulent BVDV at 2-5 weeks of age and/or after maternal antibody had waned. Calves exposed to BVDV while passive antibody levels were high did not mount a measurable humoral immune response to BVDV. However, compared to nonexposed animals, these animals had CD4+, CD8+, and γδ T lymphocytes that were activated by BVDV after exposure to in vitro BVDV. The production of IFNγ by lymphocytes after in vitro BVDV exposure was also much greater in lymphocytes from calves exposed to BVDV in the presence of maternal antibody compared to the nonexposed calves. These data indicate that calves exposed to BVDV while maternal antibody levels are high can develop antigen specific CD4+, CD8+, and γδ T lymphocytes in the absence of an active antibody response. A manuscript presented separately demonstrates that the calves with T lymphocytes specific for BVDV in this study were also protected from virulent BVDV genotype 2 challenge after maternal antibody became undetectable

    Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties

    Get PDF
    Forest structure and dynamics have been noted to vary across the Amazon Basin in an east-west gradient in a pattern which coincides with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. To test this hypothesis and assess the importance of edaphic properties in affect forest structure and dynamics, soil and plant samples were collected in a total of 59 different forest plots across the Amazon Basin. Samples were analysed for exchangeable cations, C, N, pH with various Pfractions also determined. Physical properties were also examined and an index of soil physical quality developed. Overall, forest structure and dynamics were found to be strongly and quantitatively related to edaphic conditions. Tree turnover rates emerged to be mostly influenced by soil physical properties whereas forest growth rates were mainly related to a measure of available soil phosphorus, although also dependent on rainfall amount and distribution. On the other hand, large scale variations in forest biomass could not be explained by any of the edaphic properties measured, nor by variation in climate. A new hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining forest disturbance levels, species composition and forest productivity on a Basin wide scale

    Does the disturbance hypothesis explain the biomass increase in basin-wide Amazon forest plot data?

    Get PDF
    Positive aboveground biomass trends have been reported from old-growth forests across the Amazon basin and hypothesized to reflect a large-scale response to exterior forcing. The result could, however, be an artefact due to a sampling bias induced by the nature of forest growth dynamics. Here, we characterize statistically the disturbance process in Amazon old-growth forests as recorded in 135 forest plots of the RAINFOR network up to 2006, and other independent research programmes, and explore the consequences of sampling artefacts using a data-based stochastic simulator. Over the observed range of annual aboveground biomass losses, standard statistical tests show that the distribution of biomass losses through mortality follow an exponential or near-identical Weibull probability distribution and not a power law as assumed by others. The simulator was parameterized using both an exponential disturbance probability distribution as well as a mixed exponential–power law distribution to account for potential large-scale blowdown events. In both cases, sampling biases turn out to be too small to explain the gains detected by the extended RAINFOR plot network. This result lends further support to the notion that currently observed biomass gains for intact forests across the Amazon are actually occurring over large scales at the current time, presumably as a response to climate change

    Phylogenetic diversity of Amazonian tree communities

    Get PDF
    This is the peer reviewed version of the following article: Honorio Coronado, E. N., Dexter, K. G., Pennington, R. T., Chave, J., Lewis, S. L., Alexiades, M. N., Alvarez, E., Alves de Oliveira, A., Amaral, I. L., Araujo-Murakami, A., Arets, E. J. M. M., Aymard, G. A., Baraloto, C., Bonal, D., Brienen, R., Cerón, C., Cornejo Valverde, F., Di Fiore, A., Farfan-Rios, W., Feldpausch, T. R., Higuchi, N., Huamantupa-Chuquimaco, I., Laurance, S. G., Laurance, W. F., López-Gonzalez, G., Marimon, B. S., Marimon-Junior, B. H., Monteagudo Mendoza, A., Neill, D., Palacios Cuenca, W., Peñuela Mora, M. C., Pitman, N. C. A., Prieto, A., Quesada, C. A., Ramirez Angulo, H., Rudas, A., Ruschel, A. R., Salinas Revilla, N., Salomão, R. P., Segalin de Andrade, A., Silman, M. R., Spironello, W., ter Steege, H., Terborgh, J., Toledo, M., Valenzuela Gamarra, L., Vieira, I. C. G., Vilanova Torre, E., Vos, V., Phillips, O. L. (2015), Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 21: 1295–1307. doi: 10.1111/ddi.12357, which has been published in final form at 10.1111/ddi.12357Aim: To examine variation in the phylogenetic diversity (PD) of tree communities across geographical and environmental gradients in Amazonia. Location: Two hundred and eighty-three c. 1 ha forest inventory plots from across Amazonia. Methods: We evaluated PD as the total phylogenetic branch length across species in each plot (PDss), the mean pairwise phylogenetic distance between species (MPD), the mean nearest taxon distance (MNTD) and their equivalents standardized for species richness (ses.PDss, ses.MPD, ses.MNTD). We compared PD of tree communities growing (1) on substrates of varying geological age; and (2) in environments with varying ecophysiological barriers to growth and survival. Results: PDss is strongly positively correlated with species richness (SR), whereas MNTD has a negative correlation. Communities on geologically young- and intermediate-aged substrates (western and central Amazonia respectively) have the highest SR, and therefore the highest PDss and the lowest MNTD. We find that the youngest and oldest substrates (the latter on the Brazilian and Guiana Shields) have the highest ses.PDss and ses.MNTD. MPD and ses.MPD are strongly correlated with how evenly taxa are distributed among the three principal angiosperm clades and are both highest in western Amazonia. Meanwhile, seasonally dry tropical forest (SDTF) and forests on white sands have low PD, as evaluated by any metric. Main conclusions: High ses.PDss and ses.MNTD reflect greater lineage diversity in communities. We suggest that high ses.PDss and ses.MNTD in western Amazonia results from its favourable, easy-to-colonize environment, whereas high values in the Brazilian and Guianan Shields may be due to accumulation of lineages over a longer period of time. White-sand forests and SDTF are dominated by close relatives from fewer lineages, perhaps reflecting ecophysiological barriers that are difficult to surmount evolutionarily. Because MPD and ses.MPD do not reflect lineage diversity per se, we suggest that PDss, ses.PDss and ses.MNTD may be the most useful diversity metrics for setting large-scale conservation priorities.FINCyT - PhD studentshipSchool of Geography of the University of LeedsRoyal Botanic Garden EdinburghNatural Environment Research Council (NERC)Gordon and Betty Moore FoundationEuropean Union's Seventh Framework ProgrammeERCCNPq/PELDNSF - Fellowshi

    Sixty-four new records for the flora of Peru from rapid biological inventories in the Peruvian Amazon

    Get PDF
    Durante el período 2000 – 2016, se llevaron a cabo 15 inventarios biológicos en áreas remotas en el pie de monte andino y el llano amazónico del Perú. En estos inventarios, 27 botánicos colectaron un total de 9397 especímenes de plantas vasculares fértiles. Hasta finales del 2017, más de la mitad de estos especímenes se han identificado a nivel de especie, de los cuales 64 especies y 2 géneros (Dicorynia y Monopteryx) representan nuevos registros para la flora del Perú. Si esta tasa de novedades se mantiene, el número de registros nuevos en el material de los inventarios podría aumentar, lo cual nos indica que aún queda mucho por descubrir en la flora andino-amazónica del Perú.Between 2000 and 2016 we carried out 15 rapid biological inventories in remote areas of the Andean foothills and Amazon basin in Peru. During these inventories, 27 botanists collected 9397 fertile vascular plant specimens. By the end of 2017, more than half of these specimens had been identified to species. Of the 2303 species identified to date, 64 species and 2 genera (Dicorynia and Monopteryx) are new records for the flora of Peru. If this rate of discovery proves typical, the number of new records for Peru in the rapid inventory material could increase, which indicates that there is still much to discover in the Peruvian flora
    corecore