486 research outputs found

    Quantum Superposition of Massive Objects and Collapse Models

    Full text link
    We analyze the requirements to test some of the most paradigmatic collapse models with a protocol that prepares quantum superpositions of massive objects. This consists of coherently expanding the wave function of a ground-state-cooled mechanical resonator, performing a squared position measurement that acts as a double slit, and observing interference after further evolution. The analysis is performed in a general framework and takes into account only unavoidable sources of decoherence: blackbody radiation and scattering of environmental particles. We also discuss the limitations imposed by the experimental implementation of this protocol using cavity quantum optomechanics with levitating dielectric nanospheres.Comment: 19 pages, 17 figure

    Influence of Syntectonic sedimentation and décollement rheology on the geometry and evolution of orogenic wedges: analog modelling of the Kuqa Fold-and-thrust belt (NW China)

    Get PDF
    Contractional deformation in the outer parts of fold‐and‐thrust belts is in part controlled by the presence of syntectonic sediments and multiple dĂ©collements (e.g., the Apennines, the Appalachians, the Pyrenees, the Zagros, or the Sub‐Andean and Kuqa fold‐and‐thrust belts). To better understand the influence of these parameters in the kinematic evolution of fold‐and‐thrust systems, we carried out an experimental study including four 3‐D sandbox models inspired by one of the previously mentioned prototypes, the Kuqa fold‐and‐thrust belt. This belt contains two dĂ©collements: a weak synorogenic salt layer and a deeper, preorogenic, and frictionless dĂ©collement (i.e., organic‐rich shales) showing along strike variations of rheology. The experimental results show that increasing synkinematic sedimentation rate (i) generates a progressive change from distributed to localized deformation and (ii) delays the development of frontal contractional structures detached on the salt, favoring the formation and reactivation of more hinterland thrusts and backthrusts. With respect to the rheology, our study reveals that as the viscosity of the prekinematic dĂ©collement increases, (i) the deformation propagates more slowly toward the foreland, and (ii) the underlying thrust stack becomes broader and lower and has a gentler thrust taper angle. The rheology of the prekinematic dĂ©collement defines the distribution and geometry of the structures detached on it that in turn influence the development of overlying, salt‐detached structures. Subsalt structures can (i) determine the areal extent of the salt and therefore of any fold‐and‐thrust system detached on it and (ii) hamper or even prevent the progressive foreland propagation of deformation above the salt

    High levels of standardized ileal digestible amino acids improve feed efficiency in slow-growing pigs at late grower-finisher stage

    Get PDF
    Slow-growing pigs negatively affect production efficiency in conventional pig farms by increasing the occupation time of the facilities and being a limiting factor for the All-In/All-Out swine production systems. This subset of pigs is usually managed with the rest of the pigs, and their nutrient requirements may not be fulfilled. The purpose of the present study was to compare the productive performance of slow- and fast-growing pigs to different standardized ileal digestible (SID) amino acids (AA) dietary levels at late grower-finisher stage. A total of 84 pigs were weighed, tagged, and classified as slow-growing (SG; n = 48; 24.1 ± 1.38 kg) or fast-growing pigs (FG; n = 36; 42.7 ± 1.63 kg) at 11 weeks of age. Pigs were housed in mixed sex pens (n = 8 SG+6 FG/pen) equipped with feeding stations to record daily feed intake per individual pig. Pigs were assigned to three dietary treatments resulting in a 2 × 3 factorial arrangement at 15 weeks of age. Isoenergetic diets were formulated by increasing the ideal protein profile based on the following SID lysine (Lys) levels: 0.92%, 1.18% and 1.45%. Pigs were weighed bi-weekly until 21 weeks of age. Fast-growing pigs were 33.7 kg heavier, gained 255 g/day and consumed 625.5 g/day more than SG pigs (p 0.05). However, feed conversion ratio was 0.3 lower for SG pigs fed 1.45% SID Lys/AA compared to SG pigs fed 0.92% SID Lys/AA (p = 0.002). Feed conversion ratio was not different within the FG pigs' dietary treatments (p > 0.05). The efficiency of SG pigs may be improved when dietary SID AA levels are increased from 0.92 up to 1.45% SID Lys/AA. Thus, nutrient requirements may vary depending on growth rate at the same age, and SG pigs may require higher dietary SID AA levels than FG pigs to achieve similar productive performance

    The Crowd in Requirements Engineering: The Landscape and Challenges

    Get PDF
    Crowd-based requirements engineering (CrowdRE) could significantly change RE. Performing RE activities such as elicitation with the crowd of stakeholders turns RE into a participatory effort, leads to more accurate requirements, and ultimately boosts software quality. Although any stakeholder in the crowd can contribute, CrowdRE emphasizes one stakeholder group whose role is often trivialized: users. CrowdRE empowers the management of requirements, such as their prioritization and segmentation, in a dynamic, evolved style through collecting and harnessing a continuous flow of user feedback and monitoring data on the usage context. To analyze the large amount of data obtained from the crowd, automated approaches are key. This article presents current research topics in CrowdRE; discusses the benefits, challenges, and lessons learned from projects and experiments; and assesses how to apply the methods and tools in industrial contexts. This article is part of a special issue on Crowdsourcing for Software Engineering

    Vacuum destabilization from Kaluza-Klein modes in an inflating brane

    Full text link
    We discuss the effects from the Kaluza-Klein modes in the brane world scenario when an interaction between bulk and brane fields is included. We focus on the bulk inflaton model, where a bulk field Κ\Psi drives inflation in an almost AdS5AdS_5 bulk bounded by an inflating brane. We couple Κ\Psi to a brane scalar field ϕ\phi representing matter on the brane. The bulk field Κ\Psi is assumed to have a light mode, whose mass depends on the expectation value of ϕ\phi. To estimate the effects from the KK modes, we compute the 1-loop effective potential V_\eff(\phi). With no tuning of the parameters of the model, the vacuum becomes (meta)stable -- V_\eff(\phi) develops a true vacuum at a nonzero ϕ\phi. In the true vacuum, the light mode of Κ\Psi becomes heavy, degenerates with the KK modes and decays. We comment on some implications for the bulk inflaton model. Also, we clarify some aspects of the renormalization procedure in the thin wall approximation, and show that the fluctuations in the bulk and on the brane are closely related.Comment: 15 pages, 2 eps figures. Notation improved, references adde

    Massless scalar fields and infrared divergences in the inflationary brane world

    Full text link
    We study the quantum effects induced by bulk scalar fields in a model with a de Sitter (dS) brane in a flat bulk (the Vilenkin-Ipser-Sikivie model) in more than four dimensions. In ordinary dS space, it is well known that the stress tensor in the dS invariant vacuum for an effectively massless scalar (m_\eff^2=m^2+\xi {\cal R}=0 with R{\cal R} the Ricci scalar) is infrared divergent except for the minimally coupled case. The usual procedure to tame this divergence is to replace the dS invariant vacuum by the Allen Follaci (AF) vacuum. The resulting stress tensor breaks dS symmetry but is regular. Similarly, in the brane world context, we find that the dS invariant vacuum generates \tmn divergent everywhere when the lowest lying mode becomes massless except for massless minimal coupling case. A simple extension of the AF vacuum to the present case avoids this global divergence, but \tmn remains to be divergent along a timelike axis in the bulk. In this case, singularities also appear along the light cone emanating from the origin in the bulk, although they are so mild that \tmn stays finite except for non-minimal coupling cases in four or six dimensions. We discuss implications of these results for bulk inflaton models. We also study the evolution of the field perturbations in dS brane world. We find that perturbations grow linearly with time on the brane, as in the case of ordinary dS space. In the bulk, they are asymptotically bounded.Comment: 20 pages. References adde

    3D Lowest Landau Level Theory Applied to YBCO Magnetization and Specific Heat Data: Implications for the Critical Behavior in the H-T Plane

    Full text link
    We study the applicability of magnetization and specific heat equations derived from a lowest-Landau-level (LLL) calculation, to the high-temperature superconducting (HTSC) materials of the YBa2_2Cu3_3O7−ή_{7-\delta} (YBCO) family. We find that significant information about these materials can be obtained from this analysis, even though the three-dimensional LLL functions are not quite as successful in describing them as the corresponding two-dimensional functions are in describing data for the more anisotropic HTSC Bi- and Tl-based materials. The results discussed include scaling fits, an alternative explanation for data claimed as evidence for a second order flux lattice melting transition, and reasons why 3DXY scaling may have less significance than previously believed. We also demonstrate how 3DXY scaling does not describe the specific heat data of YBCO samples in the critical region. Throughout the paper, the importance of checking the actual scaling functions, not merely scaling behavior, is stressed.Comment: RevTeX; 10 double-columned pages with 7 figures embedded. (A total of 10 postscript files for the figures.) Submitted to Physical Review

    Imperfect Dark Energy from Kinetic Gravity Braiding

    Full text link
    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.Comment: 41 pages, 7 figures. References and some clarifying language added. This version was accepted for publication in JCA

    Emergent Gauge Fields in Holographic Superconductors

    Full text link
    Holographic superconductors have been studied so far in the absence of dynamical electromagnetic fields, namely in the limit in which they coincide with holographic superfluids. It is possible, however, to introduce dynamical gauge fields if a Neumann-type boundary condition is imposed on the AdS-boundary. In 3+1 dimensions, the dual theory is a 2+1 dimensional CFT whose spectrum contains a massless gauge field, signaling the emergence of a gauge symmetry. We study the impact of a dynamical gauge field in vortex configurations where it is known to significantly affect the energetics and phase transitions. We calculate the critical magnetic fields H_c1 and H_c2, obtaining that holographic superconductors are of Type II (H_c1 < H_c2). We extend the study to 4+1 dimensions where the gauge field does not appear as an emergent phenomena, but can be introduced, by a proper renormalization, as an external dynamical field. We also compare our predictions with those arising from a Ginzburg-Landau theory and identify the generic properties of Abrikosov vortices in holographic models.Comment: 19 pages, 14 figures, few comments added, version published in JHE

    The Imperfect Fluid behind Kinetic Gravity Braiding

    Get PDF
    We present a standard hydrodynamical description for non-canonical scalar field theories with kinetic gravity braiding. In particular, this picture applies to the simplest galileons and k-essence. The fluid variables not only have a clear physical meaning but also drastically simplify the analysis of the system. The fluid carries charges corresponding to shifts in field space. This shift-charge current contains a spatial part responsible for diffusion of the charges. Moreover, in the incompressible limit, the equation of motion becomes the standard diffusion equation. The fluid is indeed imperfect because the energy flows neither along the field gradient nor along the shift current. The fluid has zero vorticity and is not dissipative: there is no entropy production, the energy-momentum is exactly conserved, the temperature vanishes and there is no shear viscosity. Still, in an expansion around a perfect fluid one can identify terms which correct the pressure in the manner of bulk viscosity. We close by formulating the non-trivial conditions for the thermodynamic equilibrium of this imperfect fluid.Comment: 23 pages plus appendices. New version includes extended discussion on diffusion and dynamics in alternative frames, as well as additional references. v3 reflects version accepted for publication in JHEP: minor comments added regarding suitability to numerical approache
    • 

    corecore