13,737 research outputs found

    Thermal correlators of anyons in two dimensions

    Full text link
    The anyon fields have trivial α\alpha-commutator for α\alpha not integer. For integer α\alpha the commutators become temperature-dependent operator valued distributions. The nn-point functions do not factorize as for quasifree states.Comment: 14 pages, LaTeX (misprints corrected, a reference added

    Continuous quantum measurement with independent detector cross-correlations

    Full text link
    We investigate the advantages of using two independent, linear detectors for continuous quantum measurement. For single-shot quantum measurement, the measurement is maximally efficient if the detectors are twins. For weak continuous measurement, cross-correlations allow a violation of the Korotkov-Averin bound for the detector's signal-to-noise ratio. A vanishing noise background provides a nontrivial test of ideal independent quantum detectors. We further investigate the correlations of non-commuting operators, and consider possible deviations from the independent detector model for mesoscopic conductors coupled by the screened Coulomb interaction.Comment: 4 pages, 2 figure

    On second-order differential equations with highly oscillatory forcing terms

    Get PDF
    We present a method to compute efficiently solutions of systems of ordinary differential equations that possess highly oscillatory forcing terms. This approach is based on asymptotic expansions in inverse powers of the oscillatory parameter,and features two fundamental advantages with respect to standard ODE solvers: rstly, the construction of the numerical solution is more efficient when the system is highly oscillatory, and secondly, the cost of the computation is essentially independent of the oscillatory parameter. Numerical examples are provided, motivated by problems in electronic engineering

    Slope Instability of the Earthen Levee in Boston, UK: Numerical Simulation and Sensor Data Analysis

    Full text link
    The paper presents a slope stability analysis for a heterogeneous earthen levee in Boston, UK, which is prone to occasional slope failures under tidal loads. Dynamic behavior of the levee under tidal fluctuations was simulated using a finite element model of variably saturated linear elastic perfectly plastic soil. Hydraulic conductivities of the soil strata have been calibrated according to piezometers readings, in order to obtain correct range of hydraulic loads in tidal mode. Finite element simulation was complemented with series of limit equilibrium analyses. Stability analyses have shown that slope failure occurs with the development of a circular slip surface located in the soft clay layer. Both models (FEM and LEM) confirm that the least stable hydraulic condition is the combination of the minimum river levels at low tide with the maximal saturation of soil layers. FEM results indicate that in winter time the levee is almost at its limit state, at the margin of safety (strength reduction factor values are 1.03 and 1.04 for the low-tide and high-tide phases, respectively); these results agree with real-life observations. The stability analyses have been implemented as real-time components integrated into the UrbanFlood early warning system for flood protection

    Exploring the Referral and Usage of Science Fiction in HCI Literature

    Full text link
    Research on science fiction (sci-fi) in scientific publications has indicated the usage of sci-fi stories, movies or shows to inspire novel Human-Computer Interaction (HCI) research. Yet no studies have analysed sci-fi in a top-ranked computer science conference at present. For that reason, we examine the CHI main track for the presence and nature of sci-fi referrals in relationship to HCI research. We search for six sci-fi terms in a dataset of 5812 CHI main proceedings and code the context of 175 sci-fi referrals in 83 papers indexed in the CHI main track. In our results, we categorize these papers into five contemporary HCI research themes wherein sci-fi and HCI interconnect: 1) Theoretical Design Research; 2) New Interactions; 3) Human-Body Modification or Extension; 4) Human-Robot Interaction and Artificial Intelligence; and 5) Visions of Computing and HCI. In conclusion, we discuss results and implications located in the promising arena of sci-fi and HCI research.Comment: v1: 20 pages, 4 figures, 3 tables, HCI International 2018 accepted submission v2: 20 pages, 4 figures, 3 tables, added link/doi for Springer proceedin

    Revisiting two-step Forbush decreases

    Get PDF
    Interplanetary coronal mass ejections (ICMEs) and their shocks can sweep out galactic cosmic rays (GCRs), thus creating Forbush decreases (FDs). The traditional model of FDs predicts that an ICME and its shock decrease the GCR intensity in a two-step profile. This model, however, has been the focus of little testing. Thus, our goal is to discover whether a passing ICME and its shock inevitably lead to a two-step FD, as predicted by the model. We use cosmic ray data from 14 neutron monitors and, when possible, high time resolution GCR data from the spacecraft International Gamma Ray Astrophysical Laboratory (INTEGRAL). We analyze 233 ICMEs that should have created two-step FDs. Of these, only 80 created FDs, and only 13 created two-step FDs. FDs are thus less common than predicted by the model. The majority of events indicates that profiles of FDs are more complicated, particularly within the ICME sheath, than predicted by the model. We conclude that the traditional model of FDs as having one or two steps should be discarded. We also conclude that generally ignored small-scale interplanetary magnetic field structure can contribute to the observed variety of FD profiles

    Fabrication of salt–hydrogel marbles and hollow-shell microcapsules by an aerosol gelation technique

    Get PDF
    We designed a new method for preparation of liquid marbles by using hydrophilic particles. Salt–hydrogel marbles were prepared by atomising droplets of hydrogel solution in a cold air column followed by rolling of the collected hydrogel microbeads in a bed of micrometre sized salt particles. Evaporation of the water from the resulting salt marbles with a hydrogel core yielded hollow-shell salt microcapsules. The method is not limited to hydrophilic particles and could potentially be also applied to particles of other materials, such as graphite, carbon black, silica and others. The structure and morphology of the salt–hydrogel marbles were analysed by SEM and their particle size distributions were measured. We also tested the dissolution times of the dried salt marbles and compared them with those of table salt samples under the same conditions. The high accessible surface area of the shell of salt microcrystals allows a faster initial release of salt from the hollow-shell salt capsules upon their dissolution in water than from the same amount of table salt. The results suggest that such hollow-shell particles could find applications as a table salt substitute in dry food products and salt seasoning formulations with reduced salt content without the loss of saltiness

    An approach for assessing software prototypes

    Get PDF
    A procedure for evaluating a software prototype is presented. The need to assess the prototype itself arises from the use of prototyping to demonstrate the feasibility of a design or development stategy. The assessment procedure can also be of use in deciding whether to evolve a prototype into a complete system. The procedure consists of identifying evaluations criteria, defining alterative design approaches, and ranking the alternatives according to the criteria
    • 

    corecore