26 research outputs found
Pollen morphology of the endemic genera of the Madeira archipelago, Portugal
ABSTRACT: This study presents the first palynological characterisation of the five endemic plant genera of the Madeira archipelago: Chamaemeles Lindl, Melanoselinum Hoffm., Monizia Lowe, Musschia Dumort and Sinapidendron Lowe. Pollen grain morphology of ten endemic species was studied using light and scanning electron microscopy techniques. The size and shape of pollen grains, the polar axis, the equatorial diameter, and the exine ornamentation were measured and described. We found that the pollen grains of the five endemic genera are all medium-size monads. The close relative apiaceous Melanoselinum and Monizia differ in polar (P) and equatorial (E) diameter size and exine ornamentation while Sinapidendron species show differences in P, E, and P/E ratios. The pollen grains of the two Musschia species are very similar to each other, but differ in morphology and ornamentation from the Macaronesian endemic bellflowers Azorina vidalii and Canarina canariensis. This study unveiled differences between the endemic taxa and with their close related species, thus providing support to previous taxonomic findings.info:eu-repo/semantics/publishedVersio
Creación de personaje en la técnica clown de la puesta en escena "Los merolicos"
La creación de personaje en la técnica clown para la puesta en escena “Los merolicos
Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska
Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root‐associated, respond to warming. Here, we investigate how long‐term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long‐term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU‐rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium‐distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium‐distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage.Plant science
Long-term experimental warming alters community composition of ascomycetes in Alaskan moist and dry arctic tundra
Arctic tundra regions have been responding to global warming with visible changes in plant community composition, including expansion of shrubs and declines in lichens and bryophytes. Even though it is well known that the majority of arctic plants are associated with their symbiotic fungi, how fungal community composition will be different with climate warming remains largely unknown. In this study, we addressed the effects of long‐term (18 years) experimental warming on the community composition and taxonomic richness of soil ascomycetes in dry and moist tundra types. Using deep Ion Torrent sequencing, we quantified how OTU assemblage and richness of different orders of Ascomycota changed in response to summer warming. Experimental warming significantly altered ascomycete communities with stronger responses observed in the moist tundra compared with dry tundra. The proportion of several lichenized and moss‐associated fungi decreased with warming, while the proportion of several plant and insect pathogens and saprotrophic species was higher in the warming treatment. The observed alterations in both taxonomic and ecological groups of ascomycetes are discussed in relation to previously reported warming‐induced shifts in arctic plant communities, including decline in lichens and bryophytes and increase in coverage and biomass of shrubs.Plant science
Josephson vortices and solitons inside pancake vortex lattice in layered superconductors
In very anisotropic layered superconductors a tilted magnetic field generates
crossing vortex lattices of pancake and Josephson vortices (JVs). We study the
properties of an isolated JV in the lattice of pancake vortices. JV induces
deformations in the pancake vortex crystal, which, in turn, substantially
modify the JV structure. The phase field of the JV is composed of two types of
phase deformations: the regular phase and vortex phase. The phase deformations
with smaller stiffness dominate. The contribution from the vortex phase
smoothly takes over with increasing magnetic field. We find that the structure
of the cores experiences a smooth yet qualitative evolution with decrease of
the anisotropy. At large anisotropies pancakes have only small deformations
with respect to position of the ideal crystal while at smaller anisotropies the
pancake stacks in the central row smoothly transfer between the neighboring
lattice positions forming a solitonlike structure. We also find that even at
high anisotropies pancake vortices strongly pin JVs and strongly increase their
viscous friction.Comment: 22 pages, 11 figures, to appear in Phys. Rev.
Measurement of the diffractive structure function in deep inelastic scattering at HERA
This paper presents an analysis of the inclusive properties of diffractive
deep inelastic scattering events produced in interactions at HERA. The
events are characterised by a rapidity gap between the outgoing proton system
and the remaining hadronic system. Inclusive distributions are presented and
compared with Monte Carlo models for diffractive processes. The data are
consistent with models where the pomeron structure function has a hard and a
soft contribution. The diffractive structure function is measured as a function
of \xpom, the momentum fraction lost by the proton, of , the momentum
fraction of the struck quark with respect to \xpom, and of . The \xpom
dependence is consistent with the form \xpoma where
in all bins of and
. In the measured range, the diffractive structure function
approximately scales with at fixed . In an Ingelman-Schlein type
model, where commonly used pomeron flux factor normalisations are assumed, it
is found that the quarks within the pomeron do not saturate the momentum sum
rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil
Honey bee visitation to sunflower: effects on pollination and plant genotype
Sunflower (Helianthus annuus L.) is an allogamic plant, which needs insects on flowering, especially the honeybees for seed production. Collecting nectar and pollen by honeybees in agricultural crops is essential to apiculture, as well as a better understanding of plant biology. The foraging behavior of Africanized Apis mellifera L. (Hymenoptera, Apidae) and its efficiency of pollination on seed yield of sunflower genotypes (open pollination and restricted pollination) were evaluated. There were peaks of visits by A. mellifera for nectar collection on the 2nd and 3rd flowering days between 7h00 and 8h30. The average density of A. mellifera during increased visitation ranged from 2.27 to 2.94 bees per capitulum. Nectar collecting bees were more frequent (2.28 bees per capitulum) than pollen collecting (0.40 bees per capitulum). On the 3rd flowering day, Helio 360 and Aguará hybrids had higher (p ≤ 0.05) number of bee visits per flower head than the other genotypes. Seed yield was 43 % higher (p ≤ 0.05) from sunflower plants that were visited by pollinator-insects compared with plants restricted to pollinators
Multi-gene phylogenetic analyses reveal species limits, phylogeographic patterns, and evolutionary histories of key morphological traits in Entoloma (Agaricales, Basidiomycota)
Species from Entoloma subg. Entoloma are commonly recorded from both the Northern and Southern Hemispheres and, according to literature, most of them have at least Nearctic-Palearctic distributions. However, these records are based on morphological analysis, and studies relating morphology, molecular data and geographical distribution have not been reported. In this study, we used phylogenetic species recognition criteria through gene genealogical concordance (based on nuclear ITS, LSU, rpb2 and mitochondrial SSU) to answer specific questions considering species limits in Entoloma subg. Entoloma and their geographic distribution in Europe, North America and Australasia. The studied morphotaxa belong to sect. Entoloma, namely species like the notorious poisonous E. sinuatum (E. lividum auct.), E. prunuloides (type-species of sect. Entoloma), E. nitidum and the red-listed E. bloxamii. With a few exceptions, our results reveal strong phylogeographical partitions that were previously not known. For example, no collection from Australasia proved to be conspecific with the Northern Hemisphere specimens.
Almost all North American collections represent distinct and sister taxa to the European ones. And even within Europe, new lineages were uncovered for the red-listed E. bloxamii, which were previously unknown due to a broad morphological species concept. Our results clearly demonstrate the power of the phylogenetic species concept to reveal evolutionary units, to redefine the morphological limits of the species addressed and to provide insights into the evolutionary history of key morphological characters for Entoloma systematics. New taxa are described, and new combinations are made, including E. fumosobrunneum, E. pseudoprunuloides, E. ochreoprunuloides and E. caesiolamellatum. Epitypes are selected for E. prunuloides and E. bloxamii. In addition, complete descriptions are given of some other taxa used in this study for which modern descriptions are lacking, viz. E. subsinuatum, E. whiteae, E. flavifolium, E. luridum, E. bloxamii, E. madidum, E. corneri, E. callidermum and E. coeruleoviride
Long-term warming alters richness and composition of taxonomic and functional groups of arctic fungi
Plant science
Epigenetic mapping of the Arabidopsis metabolome reveals mediators of the epigenotype-phenotype map
Identifying the sources of natural variation underlying metabolic differences between plants will enable a better understanding of plant metabolism and provide insights into the regulatory networks that govern plant growth and morphology. So far, however, the contribution of epigenetic variation to metabolic diversity has been largely ignored. In the present study, we utilized a panel of Arabidopsis thaliana epigenetic recombinant inbred lines (epiRILs) to assess the impact of epigenetic variation on the metabolic composition. Thirty epigenetic QTL (QTLepi) were detected, which partly overlap with QTLepi linked to growth and morphology. In an effort to identify causal candidate genes in the QTLepi regions or their putative trans-targets we performed in silico small RNA and qPCR analyses. Differentially expressed genes were further studied by phenotypic and metabolic analyses of knockout mutants. Three genes were detected that recapitulated the detected QTLepi effects, providing evidence for epigenetic regulation in cis and in trans. These results indicate that epigenetic mechanisms impact metabolic diversity, possibly via small RNAs, and thus aid in further disentangling the complex epigenotype-phenotype map