16,092 research outputs found

    Optical surface modes in the presence of nonlinearity and disorder

    Full text link
    We investigate numerically the effect of the competition of disorder, nonlinearity, and boundaries on the Anderson localization of light waves in finite-size, one-dimensional waveguide arrays. Using the discrete Anderson - nonlinear Schr\"odinger equation, the propagation of the mode amplitudes up to some finite distance is monitored. The analysis is based on the calculated localization length and the participation number, two standard measures for the statistical description of Anderson localization. For relatively weak disorder and nonlinearity, a higher disorder strength is required to achieve the same degree of localization at the edge than in the interior of the array, in agreement with recent experimental observations in the linear regime. However, for relatively strong disorder and/or nonlinearity, this behavior is reversed and it is now easier to localize an excitation at the edge than in the interior.Comment: 5 double-column pages, 7 figures, submitted for publicatio

    Inhomogeneous soliton ratchets under two ac forces

    Get PDF
    We extend our previous work on soliton ratchet devices [L. Morales-Molina et al., Eur. Phys. J. B 37, 79 (2004)] to consider the joint effect of two ac forces including non-harmonic drivings, as proposed for particle ratchets by Savele'v et al. [Europhys. Lett. 67}, 179 (2004); Phys. Rev. E {\bf 70} 066109 (2004)]. Current reversals due to the interplay between the phases, frequencies and amplitudes of the harmonics are obtained. An analysis of the effect of the damping coefficient on the dynamics is presented. We show that solitons give rise to non-trivial differences in the phenomenology reported for particle systems that arise from their extended character. A comparison with soliton ratchets in homogeneous systems with biharmonic forces is also presented. This ratchet device may be an ideal candidate for Josephson junction ratchets with intrinsic large damping

    Azimuthal distinguishability of entangled photons generated in spontaneous parametric down-conversion

    Full text link
    We experimentally demonstrate that paired photons generated in different sections of a down-conversion cone, when some of the interacting waves show Poynting vector walk-off, carry different spatial correlations, and therefore a different degree of spatial entanglement. This is shown to be in agreement with theoretical results. We also discuss how this azimuthal distinguishing information of the down-conversion cone is relevant for the implementation of quantum sources aimed at the generation of entanglement in other degrees of freedom, such as polarization.Comment: 7 pages, 5 figures, submitted to Opt. Expres

    Ratchet behavior in nonlinear Klein-Gordon systems with point-like inhomogeneities

    Get PDF
    We investigate the ratchet dynamics of nonlinear Klein-Gordon kinks in a periodic, asymmetric lattice of point-like inhomogeneities. We explain the underlying rectification mechanism within a collective coordinate framework, which shows that such system behaves as a rocking ratchet for point particles. Careful attention is given to the kink width dynamics and its role in the transport. We also analyze the robustness of our kink rocking ratchet in the presence of noise. We show that the noise activates unidirectional motion in a parameter range where such motion is not observed in the noiseless case. This is subsequently corroborated by the collective variable theory. An explanation for this new phenomenom is given

    Shape of the spatial mode function of photons generated in noncollinear spontaneous parametric downconversion

    Full text link
    We show experimentally how noncollinear geometries in spontaneous parametric downconversion induce ellipticity of the shape of the spatial mode function. The degree of ellipticity depends on the pump beam width, especially for highly focused beams. We also discuss the ellipticity induced by the spectrum of the pump beam

    100 MHz Amplitude and Polarization Modulated Optical Source for Free-Space Quantum Key Distribution at 850 nm

    Full text link
    We report on an integrated photonic transmitter of up to 100 MHz repetition rate, which emits pulses centered at 850 nm with arbitrary amplitude and polarization. The source is suitable for free space quantum key distribution applications. The whole transmitter, with the optical and electronic components integrated, has reduced size and power consumption. In addition, the optoelectronic components forming the transmitter can be space-qualified, making it suitable for satellite and future space missions.Comment: 6 figures, 2 table

    Optimization of soliton ratchets in inhomogeneous sine-Gordon systems

    Get PDF
    Unidirectional motion of solitons can take place, although the applied force has zero average in time, when the spatial symmetry is broken by introducing a potential V(x)V(x), which consists of periodically repeated cells with each cell containing an asymmetric array of strongly localized inhomogeneities at positions xix_{i}. A collective coordinate approach shows that the positions, heights and widths of the inhomogeneities (in that order) are the crucial parameters so as to obtain an optimal effective potential UoptU_{opt} that yields a maximal average soliton velocity. UoptU_{opt} essentially exhibits two features: double peaks consisting of a positive and a negative peak, and long flat regions between the double peaks. Such a potential can be obtained by choosing inhomogeneities with opposite signs (e.g., microresistors and microshorts in the case of long Josephson junctions) that are positioned close to each other, while the distance between each peak pair is rather large. These results of the collective variables theory are confirmed by full simulations for the inhomogeneous sine-Gordon system

    Bulk and surface magnetoinductive breathers in binary metamaterials

    Full text link
    We study theoretically the existence of bulk and surface discrete breathers in a one-dimensional magnetic metamaterial comprised of a periodic binary array of split-ring resonators. The two types of resonators differ in the size of their slits and this leads to different resonant frequencies. In the framework of the rotating-wave approximation (RWA) we construct several types of breather excitations for both the energy-conserved and the dissipative-driven systems by continuation of trivial breather solutions from the anticontinuous limit to finite couplings. Numerically-exact computations that integrate the full model equations confirm the quality of the RWA results. Moreover, it is demonstrated that discrete breathers can spontaneously appear in the dissipative-driven system as a results of a fundamental instability.Comment: 10 pages, 16 figure

    MAPCAT: Monitoring AGN with Polarimetry at the Calar Alto Telescopes

    Full text link
    We introduce MAPCAT, a long-term observing program for "Monitoring of AGN with Polarimetry at the Calar Alto Telescopes". Multi-spectral-range studies are critical to understand some of the most relevant current problems of high energy astrophysics of blazars such as their high energy emission mechanisms and the location of their gamma-ray emission region through event associations across the spectrum. Adding multi-spectral-range polarimetry allows for even more reliable identification of polarized flares across the spectrum in these kind of objects, as well as for more accurate modeling of their magnetic field. As part of a major international effort to study the long term multi-spectral range polarimetric behavior of blazars, MAPCAT uses -since mid 2007- CAFOS on the 2.2m Telescope at the Calar Alto Observatory (Almeria, Spain) to obtain monthly optical (R-band) photo-polarimetric measurements of a sample of 34 of the brightest gamma-ray, optical, and radio-millimeter blazars accessible from the northern hemisphere.Comment: To be published in the proceedings of High Energy Phenomena in Relativistic Outflows III (HEPRO III, IJMPCS). 4 page

    Justifications-on-demand as a device to promote shifts of attention associated with relational thinking in elementary arithmetic

    Get PDF
    Student responses to arithmetical questions that can be solved by using arithmetical structure can serve to reveal the extent and nature of relational, as opposed to computational thinking. Here, student responses to probes which require them to justify-on-demand are analysed using a conceptual framework which highlights distinctions between different forms of attention. We analyse a number of actions observed in students in terms of forms of attention and shifts between them: in the short-term (in the moment), medium-term (over several tasks), and long-term (over a year). The main factors conditioning studentsÂŽ attention and its movement are identified and some didactical consequences are proposed
    • 

    corecore