9 research outputs found

    Runtime resource management for vision-based applications in mobile robots

    Get PDF
    Computer-vision (CV) applications are an important part of mobile robot automation, analyzing the perceived raw data from vision sensors and providing a rich amount of information on the surrounding environment. The design of a high-speed and energy-efficient CV application for a resource-constrained mobile robot, while maintaining a certain targeted level of accuracy in computation, is a challenging task. This is because such applications demand a lot of resources, e.g. computing capacity and battery energy, to run seamlessly in real time. Moreover, there is always a trade-off between accuracy, performance and energy consumption, as these factors dynamically affect each other at runtime. In this thesis, we investigate novel runtime resource management approaches to improve performance and energy efficiency of vision-based applications in mobile robots. Due to the dynamic correlation between different management objectives, such as energy consumption and execution time, both environmental and computational observations need to be dynamically updated, and the actuators are manipulated at runtime based on these observations. Algorithmic and computational parameters of a CV application (output accuracy and CPU voltage/frequency) are adjusted by measuring the key factors associated with the intensity of computations and strain on CPUs (environmental complexity and instantaneous power). Furthermore, we show how mechanical characteristics of the robot, i.e. the speed of movement in this thesis, can affect the computational behaviour. Based on this investigation, we add the speed of a robot, as an actuator, to our resource management algorithm besides the considered computational knobs (output accuracy and CPU voltage/frequency). To evaluate the proposed approach, we perform several experiments on an unmanned ground vehicle equipped with an embedded computer board and use RGB and event cameras as the vision sensors for CV applications. The obtained results show that the presented management strategy improves the performance and accuracy of vision-based applications while significantly reducing the energy consumption compared with the state-of-the-art solutions. Moreover, we demonstrate that considering simultaneously both computational and mechanical aspects in management of CV applications running on mobile robots significantly reduces the energy consumption compared with similar methods that consider these two aspects separately, oblivious to each other’s outcome

    Autonomous moving target-tracking for a UAV quadcopter based on fuzzy-PI.

    Get PDF
    Moving target-tracking is an attractive application for quadcopters and a very challenging, complicated field of research due to the complex dynamics of a quadcopter and the varying speed of the moving target with time. For this reason, various control algorithms have been developed to track a moving target using a camera. In this paper, a Fuzzy-PI controller is developed to adjust the parameters of the PI controller using the position and change of position data as input. The proposed controller is compared to a gain-scheduled PID controller instead of the typical PID controller. To verify the performance of the developed system and distinguish which one has better performance, several experiments of a quadcopter tracking a moving target are conducted under the varying speed of the moving target, indoor and outdoor and during day and night. The obtained results indicate that the proposed controller works well for tracking a moving target under different scenarios, especially during night

    2020 IEEE Sensors

    Get PDF

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Unveiling Antimicrobial and Antioxidant Compositional Differences between Dukkah and Za’atar via SPME-GCMS and HPLC-DAD

    No full text
    Interest in plant-based diets has been on the rise in recent years owing to the potential health benefits of their individual components and the notion that plant-based diets might reduce the incidence of several diseases. Egyptian dukkah and Syrian za’atar are two of the most historic and famous Middle Eastern herbal blends used for their anti-inflammatory, hypolipidemic, and antidiabetic effects. Headspace SPME-GCMS and HPLC-DAD were adopted for characterizing the aroma profile and phenolic compounds of both herbal blends, respectively. Further, vapor-phase minimum inhibitory concentration was employed for assessing each blend’s antibacterial potential, while their antioxidant potential was estimated via in vitro antioxidant assays. SPME headspace analysis indicated the abundance of ethers and monoterpene hydrocarbons, while HPLC revealed the presence of several phenolics including rosmarinic acid, ferulic acid, and rutin. Biological investigations affirmed that vapor-phase of the tested blends exhibited antibacterial activities against Gram-positive and Gram-negative pathogens, while the antioxidant potential of the blends was investigated and expressed as Trolox (125.15 ± 5.92 to 337.26 ± 13.84 μM T eq/mg) and EDTA (18.08 ± 1.62 to 51.69 41 ± 5.33 μM EDTA eq/mg) equivalent. The presented study offers the first insight into the chemical profile and biological activities of both dukkah and za’atar

    Elective surgical services need to start planning for summer pressures.

    Get PDF

    Body mass index and complications following major gastrointestinal surgery: A prospective, international cohort study and meta-analysis

    No full text
    Aim Previous studies reported conflicting evidence on the effects of obesity on outcomes after gastrointestinal surgery. The aims of this study were to explore the relationship of obesity with major postoperative complications in an international cohort and to present a metaanalysis of all available prospective data. Methods This prospective, multicentre study included adults undergoing both elective and emergency gastrointestinal resection, reversal of stoma or formation of stoma. The primary end-point was 30-day major complications (Clavien–Dindo Grades III–V). A systematic search was undertaken for studies assessing the relationship between obesity and major complications after gastrointestinal surgery. Individual patient meta-analysis was used to analyse pooled results. Results This study included 2519 patients across 127 centres, of whom 560 (22.2%) were obese. Unadjusted major complication rates were lower in obese vs normal weight patients (13.0% vs 16.2%, respectively), but this did not reach statistical significance (P = 0.863) on multivariate analysis for patients having surgery for either malignant or benign conditions. Individual patient meta-analysis demonstrated that obese patients undergoing surgery formalignancy were at increased risk of major complications (OR 2.10, 95% CI 1.49–2.96, P < 0.001), whereas obese patients undergoing surgery for benign indications were at decreased risk (OR 0.59, 95% CI 0.46–0.75, P < 0.001) compared to normal weight patients. Conclusions In our international data, obesity was not found to be associated with major complications following gastrointestinal surgery. Meta-analysis of available prospective data made a novel finding of obesity being associated with different outcomes depending on whether patients were undergoing surgery for benign or malignant disease
    corecore