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ABSTRACT

Computer-vision (CV) applications are an important part of mobile robot automa-
tion, analyzing the perceived raw data from vision sensors and providing a rich
amount of information on the surrounding environment. The design of a high-speed
and energy-efficient CV application for a resource-constrained mobile robot, while
maintaining a certain targeted level of accuracy in computation, is a challenging task.
This is because such applications demand a lot of resources, e.g. computing capac-
ity and battery energy, to run seamlessly in real time. Moreover, there is always a
trade-off between accuracy, performance and energy consumption, as these factors
dynamically affect each other at runtime. In this thesis, we investigate novel runtime
resource management approaches to improve performance and energy efficiency of
vision-based applications in mobile robots. Due to the dynamic correlation between
different management objectives, such as energy consumption and execution time,
both environmental and computational observations need to be dynamically updated,
and the actuators are manipulated at runtime based on these observations. Algorith-
mic and computational parameters of a CV application (output accuracy and CPU
voltage/frequency) are adjusted by measuring the key factors associated with the
intensity of computations and strain on CPUs (environmental complexity and in-
stantaneous power). Furthermore, we show how mechanical characteristics of the
robot, i.e. the speed of movement in this thesis, can affect the computational be-
haviour. Based on this investigation, we add the speed of a robot, as an actuator,
to our resource management algorithm besides the considered computational knobs
(output accuracy and CPU voltage/frequency). To evaluate the proposed approach,
we perform several experiments on an unmanned ground vehicle equipped with an
embedded computer board and use RGB and event cameras as the vision sensors for
CV applications. The obtained results show that the presented management strategy
improves the performance and accuracy of vision-based applications while signifi-
cantly reducing the energy consumption compared with the state-of-the-art solutions.
Moreover, we demonstrate that considering simultaneously both computational and
mechanical aspects in management of CV applications running on mobile robots sig-
nificantly reduces the energy consumption compared with similar methods that con-
sider these two aspects separately, oblivious to each other’s outcome. KEYWORDS:
computer vision, mobile robot, resource management, energy efficiency.
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TIIVISTELMÄ

Tietokonenäön (CV) sovellukset ovat tärkeä osa liikkuvien robottien automatisoin-
tia, sillä ne analysoivat näköantureiden havaitsemaa raakatietoa ja tarjoavat runsaasti
tietoa lähiympäristöstä. Nopean ja energiatehokkaan CV-sovelluksen suun-nittelu
resursseiltaan rajalliselle liikkuvalle robotille siten, että samalla säilytetään tietty
tavoiteltu laskentatarkkuus, on haastava tehtävä. Tämä johtuu siitä, että tällaiset
sovellukset vaativat paljon resursseja, esimerkiksi laskentakapasiteettia ja akkuen-
ergiaa, jotta niitä voidaan käyttää saumattomasti reaaliajassa. Lisäksi tarkkuuden,
suorituskyvyn ja energiankulutuksen välillä on aina kompromissi, koska nämä tekijät
vaikuttavat dynaamisesti toisiinsa suoritusaikana. Tässä tutkielmassa tutkitaan uusia
resurssienhallinnan lähestymistapoja, joilla voidaan parantaa mobiilirobottien näkö-
pohjaisten sovellusten suorituskykyä ja energiatehokkuutta. Koska eri hallintatavoit-
teiden, kuten energiankulutuksen ja suoritusajan, välillä on dynaaminen korrelaatio,
sekä ym-päristö- että laskennalliset havainnot on päivitettävä dynaamisesti, ja toimi-
laitteita manipuloidaan ajonaikana näiden havaintojen perusteella. CV-sovelluksen
algoritmi- ja laskentaparametreja (tulostustarkkuus ja suorittimen jännite/taajuus)
säädetään mittaamalla keskeisiä tekijöitä, jotka liittyvät laskentojen intensiteettiin
ja suorittimen rasitukseen (ympäristön monimutkaisuus ja hetkellinen teho). Lisäksi
osoitamme, miten robotin mekaaniset ominaisuudet, eli tässä tutkielmassa liikenopeus,
voivat vaikuttaa laskennalliseen käyttäytymiseen. Tämän tutkimuksen perusteella
lisäämme robotin nopeussäädön resurssienhallinta-algoritmiimme tarkasteltujen las-
kennallisten parametrien (tulostustarkkuus ja suorittimen jännite/taajuus) lisäksi. Ar-
vioidaksemme ehdotettua lähestymistapaa suoritamme useita kokeita miehittämät-
tömällä maa-ajoneuvolla, joka on varustettu sulautetulla tietokoneyksiköllä ja jossa
käytetään RGB- ja tapahtumakameroita CV-sovellusten näköantureina. Saadut tu-
lokset osoittavat, että esitetty hallintastrategia parantaa näköpohjaisten sovellusten
suorituskykyä ja tarkkuutta ja vähentää samalla merkittävästi energiankulutusta ver-
rattuna uusimpiin ratkaisuihin. Lisäksi osoitamme, että sekä laskennallisten että me-
kaanisten näkökohtien samanaikainen huomioon ottaminen liikkuvissa roboteissa
toimivien CV-sovellusten hallinnassa vähentää merkittävästi energiankulutusta ver-
rattuna vastaaviin menetelmiin, joissa nämä kaksi näkökohtaa otetaan huomioon
erikseen ilman tietoa toistensa vaikutuksesta. ASIASANAT: tietokonenäkö, mobi-
ilirobotti, resurssien hallinta, energiatehokkuus.
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1 Introduction

Computer vision, usually abbreviated as CV, enables robots and other machines to
see, recognize, and analyze things in their environment the same way humans do.
The concept of computer vision is based on how to teach computers to analyze and
process data collected from the surrounding environment such as images to perform
low-level applications including corner/edge detection [1], optical flow [2] and depth
estimation [3], as well as high-level applications such as self-localization [4], object
detection [5], and 3D reconstruction [6]. To do that the first phase of CV is to observe
the environment and collect raw data. Different types of cameras and setups can be
used, depending on the application and the domain. There are a number of cameras
that are commercially available such as RGB [7], fisheye [8], omnidirectional [9],
RGB-D [10] and event-based cameras [11]. Every camera has its advantages and
disadvantages under various conditions such as low lighting, indoor/outdoor, texture-
less environment and highly dynamic scenes.

In addition to becoming increasingly popular, CV applications are gaining sig-
nificant attention from a variety of fields due to the unique attributes of cameras,
such as their low price, small size, and ability to capture rich information [12]. As a
result, compact systems with limited resources, i.e., mobile robots, may be equipped
with a set of cameras to perform CV methods. The use of this combination has a
significant impact on various domains. For example, in manufacturing, CV can pro-
vide different solutions such as productivity analytics, visual inspection, and quality
management [13]. In healthcare, a number of studies have demonstrated promising
results in complex medical diagnostics including cancer detection [14], COVID-19
diagnosis [15], and mask detection [16]. In addition, computer vision approaches
have the potential to have a huge impact to reshape and increase the productivity
of the agriculture domain. Computer vision has potential to improve the overall
operation of the agricultural sector, from reducing production costs with intelligent
automation to boosting productivity [17]. Other domains can also benefit from the
rapid evolution of CV algorithms such as sport [18] and transportation. [19].

The main challenges of vision-based applications are accuracy, performance, and
efficiency [4]. These aspects are correlated to each other and there is always a trade-
off among them when optimizing one aspect over the other aspects. For example in
feature extraction techniques, e.g., edge detection, obtaining high accuracy is a quite
important point that highly affects the outcome of the applications that are using such
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Introduction

techniques, e.g., visual odometry or object detection. Therefore, it is vital to process
all valuable information, i.e., inliers, and discard outliers in order to increase the ac-
curacy. From the other perspective, considering and processing all the captured raw
data, here we refer to them as the information, consumes lots of energy and time
that in mobile robots is an important factor. These mobile robots are considered
resource-constrained systems, i.e., they have limited resources such as computing
units and battery [11]. Resource management in mobile robots demands processing
the captured data in run-time. This is because most of the features needed for op-
timizing/balancing different mentioned aspects, e.g., performance and accuracy, are
changing dynamically over the system’s activity time. Based on this, to have an effi-
cient CV-based application, it is necessary to develop a resource-aware management
system that offers the manageability of resources of mobile robots at runtime.

Paper IIIDynamic SlicingIMU/DVSIntSys2019Paper IVEdge DetectionAICV2020
Paper VDynamic RA Corner DetectionICPR2020

Paper VIDynamic BANoise FilteringSensors2020 Paper VIIAsynchronous Corner TrackingISVC2020
Paper VIIIEnergy efficient Mobile Robot controlIROS2021

Paper IIEntropyICMV2019MechanicalMiddleware
CPUMiddleware

Preliminaries Paper IVisual Odometry : SurveyIEEE ACCESS 2019

EnergyManagement

Vision Algorithm
s

Performa
nce awarenes
s

Energya
wareness

  A
ccuracy

Figure 1. An overview of selected papers included in the thesis. Each category is labeled with
different color.

In this thesis, the main objective is to design and implement a resource-aware
system that monitors and manages the resource of a mobile robot in run-time. In
this process, three key factors of computer vision, i.e., accuracy, performance, and
efficiency, are considered to be optimized individually or together. The proposed
management strategies continuously monitor the system’s behaviour in run-time and
manipulate the actuators to achieve high efficiency. Here the monitoring can be
the robot’s environment and/or the internal computing units while the actuation is
toward the environment, e.g., mechanical units, and/or the computing units, e.g.,
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CPU’s voltage and frequency.
Figure 1 illustrates the different section of this thesis and the related publications.
Preliminaries: In the preliminaries part, a brief introduction about different as-

pects of the vision-based applications and resource management is discussed. More-
over, in this section, the literature review providing an up-to-date understanding of
the previous research is included. For this one paper, i.e., Paper I, is published
based on this thesis that provides a comprehensive categorization of GPS-denied
self-localization techniques including the most recent developed vision methods.

Vision algorithms: In order to improve the vision-based application on mobile
robots, one step in this thesis is focused only to improve the performance and ac-
curacy at the pure algorithmic level. Our algorithms mainly use two different types
of vision cameras including RGB and event cameras. As event-based cameras is a
new vision sensor with different output, i.e., event stream, than conventional RGB
cameras, i.e., intensity images. Before applying multi-objective resource manage-
ment systems on application based on event camera, we develop novel methods for
analyzing their output. The proposed algorithms seek to find sharp edges and unique
corners in the generated event stream. Results of this phase of research are two pa-
pers i.e., Paper VII and Paper IV. Since event cameras generate an asynchronous
stream of events, we develop an algorithm to represent the event stream to easily un-
derstand the amount of information in the scene. This approach is explained in more
detail in Paper III. Event cameras also suffer from hardware limitations, for example
shot noise in photons. Thus, denoising algorithm is needed to improve both the accu-
racy and computational complexity. We proposed a denoising algorithm that filters
out background activity noise and trailing noise. Details of the proposed algorithm
and experimental results are reported in Paper VI.

Performance/accuracy awareness: After development of efficient CV appli-
cation. We implement a resource-aware system that is capable of monitoring the
computational unit of a mobile robot. Based on the feedback received from the
computational units in run/time, the resource management system performs adaptive
filtering on the incoming data from the vision sensors as well as dynamically manip-
ulating the frequency of the processing units to keep the performance, here frame per
second, and accuracy of the application running on the robot. The proposed approach
is evaluated for different situations the robot might encounter, such as low and high
textured environments. Paper V is the original publication by the author based on
this.

Energy-awareness: After developing the performance resource management,
we extended the previous system by considering the energy consumption of the mo-
bile robot as well as optimizing the application execution. To do that, the manage-
ment algorithm factors in the power consumption of both computational parts, i.e.,
processing units, and mechanical parts, e.g., motors, and feeds this information back
during operation. The actuator knobs for the proposed resource management are the
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dynamic voltage/frequency of the processing units and the speed of the robot. This
approach is demonstrated in more detail in Paper VIII.

Testing and evaluation of the proposed techniques take place on a mobile robot
powered by a Jetson TX2 board and a DAVIS camera. Event cameras are chosen
because of their attractive features including low power consumption, high dynamic
range (HDR), and ultra-high temporal resolution, making them suitable for embed-
ded systems such as mobile robots. The output of these cameras depends on both
the complexity and dynamicity of the environment. Using the experimental setup,
we demonstrate the necessity of using the resource-aware system to enable mobile
robots to perform complex vision applications with high performance and efficiency.
Results of this study demonstrate that the proposed resource awareness RA system
is able to maintain the high performance and accuracy of vision apps running on an
embedded system. In addition, the total energy consumption of the robot system and
in general, the energy consumed per unit distance, a metric for the locomotion cost,
has decreased significantly. Experiments are conducted on various environmental
complexities including low-, medium- and high-complexity. Results show that the
proposed RA approach can save on average 50.5 %, 41 %, and 30% of energy, re-
spectively.

Accordingly, the remaining chapters of the thesis are arranged in the following
manner. Chapter 2 covers the fundamental concepts of self-localization using cam-
eras, the potential and challenges of applying CV applications on mobile robots and
discuss what resource management can offer to enable efficient deploy of CV appli-
cation on mobile robots. The development of novel computer-vision algorithms for
event-based cameras is presented in Chapter 3. Chapter 4 is devoted to highlighting
the proposed performance/accuracy awareness system. In Chapter 5, we present a
resource-aware system that achieves energy awareness by co-managing the comput-
ing units and the mechanical parts of the mobile robot. Chapter 6 concludes the
thesis with some discussion.
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2 Preliminaries

2.1 Self-Localization
Self-localization problem is one important aspect in nowadays autonomous systems
design [4]. For self-localization, the autonomous system, e.g., a vehicle or robot,
might use antennas to receive radio signals from satellites or observes the surround-
ing environment using onboard sensors to determine the location. While using GPS
for localization, the map is known and the radio signals transmitted by satellites
are used to locate the position of the vehicle. This technique is suitable for out-
door localization due to the limitations of radio signals in indoor environments [20].
In contrast, GPS-denied self-localization methods utilize data collected by different
types of onboard sensors, e.g., cameras to obtain the position, i.e., the change in the
translation vector and orientation matrix over time. Such techniques provide a more
accurate and reliable location and they can operate in scenarios where the map is
unknown.

The overall categorization of self-localization techniques is illustrated in Fig-
ure 2. This includes two main branches GPS and GPS-denied localization. In
GPS-denied localization, vehicles/robots are equipped with different types of sen-
sors including wheels, IMUs, ranging sensors such as radars and Light Detection
and Ranging (Lidar) and vision sensors, e.g., cameras, which are used to observe the
surrounding environment and capture data, which is processed to obtain the relative
pose, i.e., position and orientation. As part of our research, we investigate different
proposed vision approaches in the literature. There are several reasons for this, the
attractive features of cameras and the importance of self-location for autonomous
mobile robots. Cameras offer several benefits over other types of sensors, including
their small size, energy efficiency, and the ability to capture rich and detailed images
of their surroundings. As a result of these advantages, cameras are an ideal solution
for platforms with limited resources, such as mobile robots. Robots equipped with
cameras can perform various tasks, such as odometry and obstacle avoidance. Sev-
eral visual-odometry techniques will be discussed, along with their advantages and
limitations.

Visual odometry (VO) approaches process images to obtain the relative pose of
the camera over time. Early use of the VO was in NASA’s Mars exploration mission.
The robot used a set of cameras to obtain the position on the rough terrains of Mars.
Figure 3 illustrates the four main parts of VO methods based on each of these factors:
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Figure 2. Self-localization strategies in the literature

camera pose, type of camera, and the number of cameras.
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Figure 3. Overview classification of the existing visual odometry methods based on four criteria

key information: Existing approaches can be grouped based on the key information
used to estimate the pose into three main groups, such as 1) feature-based approaches
2) direct-based approaches, and 3) hybrid approaches. Through feature-based ap-
proaches, or indirect approaches, interesting features such as corners or edges are
extracted from images, and then these features are tracked in successive images to
calculate the transformation matrix. An edge is characterized by significant changes
in intensity in one dimension. To extract strong edges, existing edge detectors are
either based on gradients or Laplacian [21] kernels. Corners are one of the most
unique and easy-to-track features in an image because they change intensity in two
dimensions. There have been several corner detectors proposed in the literature over
the past 40 years. These include Harris [1], SIFT [22], FAST [23], and SURF [24].
There are pros and cons to each of these detectors; a detailed assessment of these
detectors can be found in [25]. Direct-based methods analyze raw images directly

19



Sherif A.S. Mohamed

to determine the camera’s pose. In order to calculate the transformation matrix, two
consecutive images are aligned to minimize intensity changes, i.e., residuals. Based
on a global smoothness assumption, dense optical flow (OF) optimizes each pixel
in images using several optimization techniques [26]. Sparse approaches solve the
brightness constancy for only some pixels using a template matching algorithm [2].
By combining both indirect- and direct-based methods in a single framework, hybrid-
based approaches address the limitations of each method. Feature-based approaches
tend to perform poorly in low-textured environments due to the limited number of
edges and corners in the scene. Direct-based methods, on the other hand, can deal
with low-texture environments since they use pixels instead of features to compute
the transformation matrix. Direct methods, however, require significant computing
power to process all pixels in an image, while feature-based methods offer a more
efficient solution by only processing certain features. In hybrid-based VO, a number
of features are extracted from images, then a batch is extracted around each feature
and all the pixels in the batch are used to minimize intensity changes when com-
puting the pose. Many approaches are available to compute the pose of the camera,
including [9] [27] [28] [29].
Camera pose. In the existing VO methods there are three camera setups available:
forward-facing [30] [31] [32], downward-facing [33], and unidirectional [34] setup.
Due to their wide field of view (FoV), forward-facing camera setups can effectively
cover a large area, making them suitable for ground and aerial vehicles. How-
ever, this setup has some limitations in detecting micro-movements and shadows.
A downward-facing setup is primarily used for obtaining the position and orienta-
tion in a previously explored environment. While this setup is capable of dealing
with slow movement, its ability to match features between two consecutive images
when the camera is moving rapidly is not so good. It has been reported that some
approaches used the forwarding-facing and downward-facing setups to determine the
camera’s pose. High-speed localization is achieved with the forward-facing camera,
while low-speed pose determination is achieved with the downward-facing camera.
Camera type. In terms of the type of camera used to observe the environment,
existing VO approaches can be classified into five groups: RGB, RGB-D, fisheye,
omnidirectional, and event-based. To generate color images, CMOS or CCD sen-
sors are used to record the absolute intensity of the pixels with a fixed frame rate
(e.g., 60 FPS). RGB images are colorful images in which each pixel has three chan-
nels including red, green, and blue. The majority of VO algorithms use gray-scale
images with a single channel to reduce computation complexity. CCD sensors em-
ploy a global shutter technique, which means the entire frame is captured at the
same time, while CMOS sensors utilize a rolling shutter technique, which means
the sensor captures the brightness of each pixel sequentially from top to bottom. In
comparison with a stereo RGB setup, RGB-D cameras are the best choice when it
comes to providing information about the depth of an image. The stereo RGB cam-
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era setup provides the depth of an image by performing a search along epipolar lines,
which is a computationally-intensive process. Similar to RGB VO methods, RGB-
D approaches can be classified as indirect methods, e.g., [10] [35] and direct-based
methods such as in [36]. Typically, fisheye cameras have a field of view between 100
and 180 degrees. In comparison to pinhole cameras, fisheye cameras offer a better
view of the environment. Although it introduces some distortion, it can be corrected
by using a special distortion model. A couple of VO algorithms that take advantage
of fisheye cameras can be found in [8] [37]. Alternatively referred to as 360-degree
cameras, omnidirectional cameras have an azimuth field of view (FoV) of 360 de-
grees and an elevation of 90 to 140 degrees. Therefore, it can estimate poses more
accurately than traditional cameras with a limited field of view, because it gathers
more information from the surrounding environment. The system also eliminates the
inherent rotation-translation ambiguity caused by a small field of view cameras. I
have listed a few approaches [9] [38] [39] that utilize omnidirectional cameras. The
term ”event camera” refers to cameras that use bio-inspired sensors, such as dynamic
vision sensors (DVS). It records pixel-by-pixel brightness changes and triggers asyn-
chronous events. Some of the features that event cameras offer are including HDR,
low latency and high temporal resolution. In addition, they consume less power
than traditional cameras because they use energy to process only brightness changes.
As a result, they offer a substantial improvement for high frequent localization on
resource-constrained platforms.

Number of cameras. Visual odometry algorithms can be categorized into monoc-
ular and stereo algorithms based on cameras used to observe the scene. Monocular
setups obtain the pose in terms of a 1D translation vector and 3D rotational matrix of
a vehicle by processing images taken by one camera. It is not affected by the baseline
issue, which is why it has gotten so much attention in recent years. Since the trans-
formation between the first two frames are unknown, monocular-based approaches
can only compute translation vectors up to a relative scale. Here are a few examples
of approaches utilizing a single camera: [28] [7] [40]. Multiple cameras are used
in a stereo camera setup such as [41] [42] [43] to allow easy reconstruction of 3D
information from stereo image pairs. To obtain an accurate pose, key information
can be extracted and tracked between two stereo pairs, and then a motion estimation
algorithm is applied, e.g., Maximum-Likelihood. This is a major drawback of using
a stereo camera setup to obtain the localization is that the calibration of the cam-
era affects the pose estimation. Many factors can affect the calibration of the stereo
cameras such as shocks, vibrations, etc., therefore extrinsic calibrations gradually
degrade over time, and periodic re-calibration is needed to keep an accurate estimate
of position. Moreover, the baseline of stereo cameras, i.e., the distance between the
stereo cameras are fixed. In several scenarios, this impacts depth estimation accu-
racy.
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2.2 Mobile Robotics

Mobile robotics is a solutions-oriented branch of industry that is rapidly develop-
ing, merging engineering sciences and information technology with such disciplines
as computer vision, Artificial Intelligence and many others. It is this interdisci-
plinary interplay that has made it possible to master the inherent complexity of mo-
bile robots. Mobile robots have the ability to move independently and perform spe-
cific tasks. Furthermore, they can function autonomously without human assistance,
in addition to their mobility. Sensors, actuators, and control electronics form the
basis for mobile robots. The purpose of sensor technology is to be able to detect
and collect a wide range of information and data that can be used for odometry and
movement planning. As a result of their low price, small size, and ability to capture
detailed information from the environment, cameras are one of the most common
sensors used in mobile robots. Utilizing images captured via the camera, mobile
robots can perform different vision-based applications such as visual odometry and
object detection. Implementing efficient vision-based applications on mobile robots
is a challenging task since processing the data captured by vision sensors requires
a lot of computational resources. Since mobile robots have limited resources such
as computing power and battery capacity, operating high efficiency and performance
vision-based applications in real-time is challenging. Therefore, it is crucial to de-
velop a resource-aware system that monitors and coordinates the use of resources and
optimizes the vision-based application in runtime to achieve a high efficacy and per-
formance CV applications running on mobile robots under challenging conditions.

2.3 Resource-aware systems

Resource-aware frameworks have the ability to monitor their resource usage and
dynamically manage resources according to specified constraints. Resources are
CPU units and batteries. They enable complex applications to operate on resource-
constrained platforms, e.g., mobile robots. Since mobile robots have limited re-
sources of energy, i.e., battery capacity, they are equipped with microcontrollers that
have limited computing capabilities. It is imperative to consider both energy and
computational constraints while designing the resource-aware system. The compu-
tational constraints can be managed using a high-level approximation or filtering in
the application layer and via a middleware that monitors the status of the CPU units
and manipulates the frequency of the CPU accordingly. We present a solution to
manage the computational constraints of a mobile robot running a complex CV ap-
plication using two correlated phases 1) a three-layer filtering and 2) a middleware
that monitors and dynamically changes CPU’s frequencies via DVFS, more details
can be found in Chapter 4. In the field of mobile robotics, energy constraints are a
major problem [44; 45].
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A main focus of the research has been optimizing the kinematic energy of a
robot neglecting the fact that aside from kinematic energy consumption, there are
many other sources of energy drain. Cyber-physical devices such as mobile robots
– that is, they contain both physical parts, such as motors, and cyber parts, such as
microcontrollers – it is imperative to consider both components when calculating the
overall energy consumption [46]. As an example, applications involving heavy vi-
sual processing drain most of the available energy. Thus, the cyber parts of robots
contribute heavily to total energy consumption and therefore it should be taken into
account while optimizing their energy consumption. As a result of the motivations
described above, we present a resource-aware system that can simultaneously ma-
nipulate mechanical and computational actuators to achieve the best overall energy
consumption. For more information, refer to Chapter 5.

2.4 Mobile Setup
In this section, we will give details about the robot architecture, the embedded board,
and vision applications. Below is a more detailed explanation of these components.

Figure 4. Platform setup.

Overall robot architecture. A brushless DC motor, an event-based camera, and
an embedded system board are included in the mobile robot, as seen in Figure 4.
Jetson TX2 is an extremely powerful and energy-efficient embedded board with two
separate CPU clusters running at maximum frequencies of 2 GHz each. We refer
to these two clusters as little and big clusters. The LITTLE.cluster is a quad-core
ARM Cortex-A57 which is designed to be energy efficient and multithreading. The
big.cluster with a dual-core Nvidia Denver 2, is specifically designed to achieve high
single-thread performance. An event camera (e.g., DAVIS-346 ) is mounted on the
robot to generate both intensity images and asynchronous event streams [47; 48].
The robot is powered by a DC brushless motor. This motor operates at a high speed
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of 50000 RPM and has a power rating of 3000 kV.
The embedded board. The middleware monitors and manages the resource of the
robot, i.e., CPU units. Firstly, a mapping unit assigns each task to a different core
within the CPU cluster based on the desired performance. The CPU frequency is
managed with runtime DVFS. The CPU cluster voltage/frequency can range from
300 kHz to 2 GHz at various intermediate steps. The middleware can identify if
the application is losing data due to overload by reporting application throughput.
Throughput is expressed as a number between 0 and 1, with 1 representing the full
processing of all the data.
Application. Our proposed system is tested and evaluated using three applications
with varying runtime complexity, namely e-frame construction and a corner detector
with and without filtering. The e-frame construction application has a low runtime
complexity [49] construct gray-scale images from generated event streams using a
highpass filter and pixel-by-pixel comparisons. The corner detector [50] detects fea-
tures, i.e., corners from the event stream. This is a complex application because it
performs expensive operations to determine whether each incoming event is a corner
by computing its eigenvalues. We use a three-level filtering algorithm with the corner
detection application in order to reduce the computational complexity to a medium
level [11].
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Computer vision methods in the literature are typically based on images captured by
conventional cameras with CMOS vision sensors. An example of this is obtaining
a robot’s pose by detecting and tracking the corners of consecutive intensity im-
ages. There are several major limitations to this type of sensor that may affect the
performance of CV applications. Greyscale or RGB images are typically generated
by capturing the intensity at a fixed rate, for example, 60Hz. A stationary camera
produces redundant information when the scene is static, which causes the compu-
tational load to increase without improving accuracy. The motion blur phenomenon
occurs, however, when objects are highly dynamic in the scene, which adversely
affects the vision application. Blind time, which is the time gap between two con-
secutive images, can also cause significant information loss. Traditional cameras are
not able to cope with highly dynamic scenes, resulting in inaccurate CV applications
such as object tracking, face detection and pose estimation.

(a) The camera moves quickly (b) The camera is static

Figure 5. Events generated between two consecutive images in two different scenarios.

Event cameras use different types of vision sensors e.g., ATIS [51] to capture
intensity changes per pixel and publish events that represent these changes. Every
time the intensity of a pixel increases/decreases by a certain amount, an event is
triggered. The amount of triggered events per second depends on both the environ-
mental complexity as well as its dynamicity. Figure 5 shows two examples of the
output of the event camera. A few events are triggered by event cameras in static or
textureless scenes. Millions of events are generated when the camera moves rapidly
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and/or the scene is highly dynamic. By transmitting only brightness changes and
thereby not transmitting redundant data, event cameras consume less power than tra-
ditional cameras. Their total power consumption at the system level is less than 100
mW [52]. Event cameras have many unique characteristics that make them a perfect
sensor for applications that operate in highly dynamic environments. For instance,
obtaining the pose for a drone operating in complex environments, in which pose
shall be updated frequently (e.g., 200 Hz) to enable the drone to navigate safely.

It is required to develop novel methods to process the event stream, in order to
exploit events’ camera potential. The vision-based algorithms that have been refined
in this thesis are techniques to improve the 1) denoising 2) image construction and
3) feature extraction.

3.1 Denoising
Like all vision sensors, event cameras are noisy due to hardware limitations in pho-
tons and transistors [47]. A study of the quantization of temporal contrast in event
cameras is particularly relevant because the process has not been fully described. A
novel denoising method is needed to model the noise of an event stream in order
to extract meaningful information from it. There are two major types of noise exits
in the event camera output including background activity (BA) and hot pixel noise.
There are many factors that cause the background activity, including charge injec-
tion, transistor leakage, and thermal noise. BA events location is more random than
real events and occurs less frequently. A similar phenomenon exists in DVS, similar
to the hot pixel in traditional image sensors. Due to its inability to reset properly, the
pixel continuously emits events.

In this thesis, we present a dynamic denoising algorithm capable of achieving
high signal-to-noise ratios (SNR) and running in a real-time manner on embedded
systems. The proposed denoising consists of two stages 1) a timestamp(TS) filter
eliminates noise using a historical map of timestamps of previous events as well
as the computed optical flow. With this filter, we can remove noise that can result
from sudden movements or significant contrast changes. 2) a background activity
(BA) filter employs a spatial-temporal kernel using the KNN algorithm to eliminate
hardware noise, such as transistor switch leakage, that causes BA noise. Results
demonstrate that our approach achieves high SNR while reducing the number of
events processed without sacrificing information. According to our experiments, the
proposed algorithm can achieve a high SNR of 13.64 dB.

In Figure 6, we compare the generated out of a DVS camera without any filtering
against our approach. A ground-mounted event camera recorded the dataset, which
consisted of a person running in front of the camera. According to the results, our
filter is effective in removing background activity noise and trailing noise caused by
significant contrast changes, as well as hardware limitations.
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((a)) moving object w/o filter ((b)) moving object w/ filter

((c)) no motion w/o filter ((d)) no motion w/ filter

Figure 6. Night run sequence. Screenshots taken at various points in time of the DVS video
output.

Abbr. Definition
Tw/o No. of True events w/o applying filtering
Nw/o No. of Noise w/o applying filtering
Tf No. of True events w/ filtering
Nf No. of Noise w/ filtering
PTR Percentage of true events left after filtering
PNR Percentage of noise left after filtering
TNRw/o Ratio of true to noise w/o filtering
TNRf Ratio of true to noise w/ filtering

Table 1. Quantitative metric

To quantify noise filtering performance, we present the following terms and met-
rics in Table 1. 1.
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shapes 6dof night run
Tw/o 10.31× 106 0.34× 106

Nw/o 7.62× 106 0.455× 106

Tf 9.73× 106 0.3× 106

Nf 0.42× 106 0.064× 106

PTR 94.37% 88.2%
PNR 5.24% 14.06%
TNRw/o 1.31 dB -1.27%
TNRf 13.64 dB 6.709 dB

Table 2. Analyzing the quantitative performance of the proposed method.

Table 2 illustrates the quantitative results of the algorithm. Two datasets [53]
were used for the evaluation with different environmental complexities. Results show
that the proposed algorithm is effective in removing noise caused by sudden move-
ments, high contrast and BA noise. Depending on the scene, the filter can maintain
a high SNR (13.6 dB) during static and slow camera motions and on average 6.7 dB
in dynamic scenes. The algorithm and results are reported in Paper VI.

3.2 Image construction
With their attractive capabilities, event-based cameras are well suited to obtain the
pose of fast and agile robots that operate in complex environments. Because event
cameras provide a stream of asynchronous events, processing the data generated by
them is not straightforward. Corners and edges, for example, cannot be extracted
directly from an event stream, making event-based applications difficult in practice.
In order to reconstruct an event, it is hard to predict how many events are needed to
construct a meaningful and sharp image from events. The primary question is, how
many events must be accumulated to create a meaningful frame? Several studies
have sought to solve these problems by pre-defining a number of events (N), e.g.,
N = 2000 event or a time window (∆ T) to generate a frame [54]. Nevertheless,
this type of technique is only applicable in certain situations, for instance when the
number of events for a given scene continues to remain constant, which means it
cannot provide solutions for all situations. In terms of efficiency and accuracy, such
techniques are limited by the camera’s velocity and environmental complexity.

In this study, we propose a hybrid technique in which a frame-based camera and
an IMU are used to dynamically select events required to build a sharp e-frame. The
number of needed events is defined by two factors: 1) the entropy of the scene, that
is, how much information is in an image, and 2) the camera velocity, which is the
rate at which the environment changes, which affects the number of generated events
per second. The assumption here is that the scene is static and the camera is moving.
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((a)) ∆T = 1ms ((b)) ∆T = 40ms ((c)) Reference image

((d)) #Events = 102 ((e)) #Events = 104 ((f)) Our approach

Figure 7. A comparison of different techniques used to construct images from the event stream

Two different values of ∆ TS and #Events are used to reconstruct the frames in
7. This scene involves rapid camera movement, i.e., a large number of events are gen-
erated per second (up to 10x10ˆ6 e/s). Using our proposed method, we were able to
construct sharp frames in all scenarios, including slow and fast camera movements.
A large /DeltaT and /Events will produce blurry frames when the camera is mov-
ing slowly. In contrast, small ∆T and #Events result in uninformative frames. For
more details, see Paper III.

3.3 Feature Detection

Feature-based methods are one of the most common approaches to designing a high-
level vision-based application. A feature-based approach involves extracting edges
or corners from images using different feature detectors. Event cameras generate
asynchronous events. Events can be collected over a predefined period of time to
detect edges [55] or by constructing an e-frame every a specified number of events
[54]. As the camera’s speed or the environment’s complexity changes, these tech-
niques become inefficient. The reason for this is that the number of events generated
over time corresponds to environmental complexity and the speed of the camera [12].
The edge in the constructed frame becomes sparse/bleeding as the events accumulate
in a fixed time epoch.

We propose a novel method of selecting events in a scene based on edges to build
a sharp e-frame. The selection of events is based on their colonization and the time

29



Sherif A.S. Mohamed

an event takes to move to one of the 8 neighboring pixels. In order to compute events’
lifetime, a local plane is fitted to its surface, and then the velocity of the event is com-
puted (Vx, Vy). By colonizing events, a system that processes a lot of events is able
to reduce its computing penalty. This results in improved performance. Our method
detects the edges of event cameras in a accurate and environment-resilient manner.
Due to its performance advantages over comparable approaches, this technique can
also be customized to fit robots powered by embedded boards.

((a)) ((b)) ((c))

((d)) ((e)) ((f))

Figure 8. Results of proposed system 8(a), 8(b), and 8(c) compared with a time fixed window
algorithm(t = 30ms) 8(d), 8(e), and 8(f) in different camera speed.

The proposed approach produces high-quality edges at varying camera speeds,
as illustrated in the figure 8. The speed of the camera affects the number of triggered
events, and thus a fixed time interval causes blur at high speeds; our algorithm, how-
ever, shows consistent and robust behavior even at high speeds (see Figure 8(a)). At
slow movements, our method was able to generate sharp edges and cope with the low
number of events generated by the event camera (see Figure 8(b) and 8(e). Lastly,
both algorithms performed well in an average speed test. In Paper IV , we describe
and elaborate on this approach.
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It is challenging to enable vision-based applications on platforms with limited com-
puting power since analyzing the captured data such as images and events demands a
lot of computational power. For example, event-based cameras in some scenarios can
generate 10∗106 event/s. Processing of all triggered events will dramatically increase
the computing complexity. High performance and accurate implementation of such
applications on a mobile robot are difficult due to the resource limitation of mobile
robots and the presence of a trade-off between accuracy and performance. There-
fore, it is essential to have a resource-aware (RA) system that can co-optimize both
accuracy and performance to enable computationally expensive applications, such
as vision-based applications on embedded platforms. The RA system will monitor
and manage computing resources, i.e. CPU units as well as perform approxima-
tion/filtering to the raw data, to ensure those complex CV applications run with high
performance and accuracy. By selecting and filtering the incoming events, we can
improve the accuracy of the application, e.g., corner detection, and reduce computa-
tional load. There are two factors that determine the quality of applications running
on embedded systems such as the accuracy and the throughput. Throughput reports
the real-time performance of the running application. The throughput value ranges
from 0 to 1, with 1 meaning that all captured data was processed on time.

Figure 9. The relationship between accuracy and performance, i.e., throughput vs. approximation,
i.e., the timestamp threshold.

Events represent the brightness change with four pieces of information, such as
the location of the pixel in the sensor, the time when the change happened, and the
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polarity of the change [-1,+1], where -1 indicates a decrease in brightness and +1
indicates an increase in brightness. When the camera moves rapidly or there is high
contrast in the scene, the event camera may trigger more than one event at the same
pixel within a short time frame. Thus, the most recent timestamp does not reflect the
actual time when the brightness changes occurred, which affects the performance
and accuracy of the performed application. A timestamp threshold filter can be used
to filter out redundant events caused by this phenomenon. Figure 9, we plot the
accuracy of the application and the achieved throughput which ranges between [0,
3] against various filtering thresholds. There is no doubt, however, that both low
filtering rates and over-filtering of events have an adverse impact on accuracy. In
addition, the quantity of events retained determines the performance of the system
and its computational load. Ultimately, we use a filtering scheme to optimize both
the accuracy and throughput of the system.

A resource-aware strategy is proposed that is composed of three layers of filter-
ing to remove noisy events from the pipeline, a monitoring unit, i.e., middleware that
monitors the status of the CPU and calculates the throughput error, and the LC-Harris
unit which extracts high-quality corners from the processed events. As the filtering
process operates, it takes into consideration both the effect of events on accuracy and
performance in terms of throughput. To ensure a robust real-time performance under
various conditions, the system filters out redundant and noisy events and only passes
unique events to be analyzed to perform a certain application, e.g., pose estimation.
The selection technique is applied to utilize the correlation of events and their neigh-
bors in the spatial and temporal domain, as well as the status of the computational
resources, i.e., CPU.

Monitoring Unit. A monitoring unit continuously observes the internal environment
of the robot, which is comprised of its computing units and calculates the throughput
error. Throughput values range from 0 to 1, and they indicate how much data was
processed in real-time. The timestamp threshold and the frequency of the CPU unit
can be adjusted based on the calculated throughput to ensure real-time performance
with high efficiency under various conditions.

Filtering Unit. The filtering unit is composed of thee filters including timestamp,
arc, and lifetime filter. Additionally to reducing the computational load, the three-
layer filtering also improves accuracy by removing outliers. We apply adaptive
timestamp filtering in the first layer. The timestamp threshold is dynamically ad-
justed according to the temporal rate of change and the throughput error reported
from middleware. Afterward, a pixel-to-pixel comparisons filtering, namely Arc fil-
ter is applied to retain only the corner candidates without increasing the computation
load. On the third layer, the lifetime filter computes the time for a corner candidate
takes to shift to one of the 8 neighboring events and eliminates all neighboring corner
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candidates that occur between the timestamp of this corner candidate and its lifetime.

LC-Harris. Various vision-based applications such as odometry and obstacle detec-
tion rely on extracted corners to perform the desired task. Harris [1] is one of the
common methods to detect strong and resilient corners from the environment. The
same techniques could be employed for event cameras, but this would lead to a heavy
computational load, as computing gradients in the traditional way are computation-
ally expensive. A new Harris algorithm is proposed that approximates the original
score to reduce the computational complexity, as well as three-layer filtering to ex-
tract corners. A window size of 9x9 pixels around the incoming corner candidate is
extracted and encoded with [0,1], where 1 means there is an event that exits in this
pixel. Only the most recent 25 N neighbors are used to improve the runtime com-
plexity. Then, the Harris score is calculated by computing the vertical and horizontal
gradients of these local patches as follows,

Rh = a
′ ∗ c′ =

∑
|Ix| ∗

∑
|Iy| (1)

where Rh denotes the Harris score, Ix and Iy are gradients in the x- and y-axis,
receptively. In comparison with the traditional Harris, the proposed algorithm can
select the best corner candidates, which saves 59% on average on execution time.

To evaluate our method in terms of accuracy against different state-of-the-art
methods, we follow a similar evaluation metric as presented in [56]. Two cylinders
are used with 3 and 5 pixels radius. Events that fall inside the small cylinder are
considered true corners (TC). Events that lay between the small and the large cylinder
are false corners (FC). In order to construct the two oblique cylinders, Harris [1] is
used to compute the intensity corners, and KLT [2] is used to compute the tracking
lines for an extracted corner. Two oblique cylinders are then created by using this
line as the center. Table 3 demonstrates that our method outperforms eFAST, Arc*,
and FA-Harris. It should be noted that both the eFast and the Arc* are performing
only simple pixel-wise operations to improve the performance which leads to poor
accuracy.

Table 3. Reported accuracy [%] of various approaches.

Approaches shapes
on wall

boxes
in office

walking
person

running
person

normal
office

eFAST[57] 56.401 48.592 51.091 55.9 54.59
eHarris[58] 57.014 49.268 69.262 62.262 61.321
Arc* [56] 55.387 49.012 52.414 53.418 51.214
FA-Harris [59] 57.668 49.662 65.329 49.666 63.664
Ours 63.202 53.276 72.182 68.761 69.626
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Real-time performance, defined as the throughput which indicates the ability to
process the raw data on time consistently, is one of the most critical aspects of em-
bedded system applications. An overview of the average throughput of the various
approaches can be found in Figure 10. In various scenarios, our method achieves the
desired throughput (throughput = 30). In comparison, Arc∗, eFAST, and FA Harris
are only capable of delivering the required throughput in situations with low textures
(e.g., shapes 6dof and walking). Despite this, these algorithms are incapable of de-
livering the required throughput in complex environments (e.g., boxes 6dof). The
eHarris method fails to achieve the desired throughput in most scenarios because it
processes all incoming events and performs costly operations to detect corners. This
approach is demonstrated and elaborated in Paper V.

Figure 10. The throughput performance of different methods. The desired throughput is 30.
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5 Energy Awareness

In the previous section, we focused on achieving real-time performance and accu-
racy for event-driven applications, e.g., corner detection on resource-constrained
platforms. The main focus was monitoring the status of the computing units of the
embedded system using middleware and adaptively tuning filtering parameters in the
event-based pipeline to ensure real-time performance as well as achieving high ac-
curacy. In this section, we are taking into account the energy constraints, i.e., the
battery capacity of mobile robots. The energy-aware system manages the resource
of the mobile system to find an energy-efficient solution under various conditions.
Managing energy constraints is a major challenge for mobile robotics. The main fo-
cus of approaches in the state-of-the-art has been optimizing the kinematics energy,
i.e., energy consumption of mechanical parts. Mobile robots are cyber-mechanical
devices, i.e, they contain cyber-parts, e.g., onboard microcontrollers beside mechan-
ical parts such as motors. Both cyber and mechanical parts contribute to the overall
energy consumption. For instance, cyber-parts, e.g., onboard computing units draw
a large amount of power when they execute heavy vision-based applications, there-
fore intelligent techniques are required to manage both cyber- and mechanical-parts
power consumption.

Generally, existing techniques aim to improve the energy efficiency of the cyber-
parts or the mechanical parts of mobile robots, without taking into consideration
their relationships with one another. For example, the speed of a mobile robot with
convectional cameras affects the quality of the captured images and hence results in
a variant computing workload. On the other hand, the robot’s speed and the envi-
ronmental complexity affect the amount of generated events per second and conse-
quently the computing workload. The number of edges in the scene indicates the
complexity of the environment. High complexity environments have a lot of edges,
resulting in numerous events. In addition, the speed of the camera or the robot affects
the number of events triggered per second. Regardless of the same environmental
complexity, the number of generated events per second increases significantly when
an event-based camera moves rapidly.

A mobile robot is used in the experiments and the vision applications were based
on data captured by an event camera. The results are reported in Figure 11 to illus-
trate the energy consumption per unit distance. We used three applications in this
experiment, each with varying computational complexity.
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Figure 11. Comparing average power consumption of computational, i.e., cyber parts and
mechanical parts of a mobile robot during three different visual applications.

According to the figure, by maximizing the speed to the maximum value, the
energy consumption may not be optimized. Actually, by the speed is set to the high-
est values, it will increase the power consumption of both the mechanical parts and
the cyber parts since the rapid movement of the event camera will generate more
events. Keeping the robot’s speed low is an effective way to save mechanical en-
ergy. Even though fewer events are generated, computation energy still dominates.
Since the speed of the travel is reduced and the total travel time is also increased,
the processing units consume most of the energy as the static energy during the wait-
ing period. We can see that the lowest energy consumption occurs when the robot
is moving at a specific speed. A third important point to bear in mind is that the
most energy-efficient speed will vary depending on the application. We can see that
the lowest energy consumption occurs when the robot is moving at a specific speed.
To provide energy-efficient control of the robot, the computational and mechanical
controllers should be tuned together at runtime. This dynamic adjustment can be
achieved by adjusting the voltage/frequency of the computing units and the robot
speed jointly. We present a novel control technique for manipulating the mechanical
and computational actuators together in order to achieve the lowest possible energy
consumption of a mobile robot. Actuators include the motor voltages to change the
speed and the voltages/frequency of the CPU. Actuators are controlled by feeding
back data, i.e., the power from the mechanical and computational components in
real-time to the controller. To minimize the overall energy consumption, the con-
troller performs fast hill-climbing at runtime in order to optimize the system config-
uration. As shown in Figure 12, On a robot equipped with an embedded board and an
event camera, experiments show that the proposed control algorithm can save battery
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((a)) Low-complexity ((b)) Medium-complexity ((c)) High-complexity

Figure 12. Evaluation of the average energy per distance in three different environmental
complexity.

energy by an average of 50.5 percent, 41 percent, and 30 percent in three different
environmental complexities including a low-complexity, a medium-complexity, and
a high-complexity, respectively. An in-depth description of the implementation and
the algorithm is provided in Paper VIII.
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6 Discussion and Conclusion

Development of CV applications for mobile robots demand careful attention since
they have limited resources, including battery capacity and embedded boards with
limited computing power. Running vision applications on mobile robots will open
new horizons and reshape the future of various domains such as agriculture, trans-
portation, security and health. The runtime complexity, accuracy and performance
of these applications depend on many factors, including the complexity of the envi-
ronment and the speed of the robot and other objects in the scene. High-performance
execution of such applications on mobile robots is difficult to achieve consistently.
Resource-aware (RA) systems could be a solution to tackle these challenges since
they can monitor and manage robot’s resources to ensure high performance and ef-
ficient operation of complex computations at runtime. In this thesis, we analyze the
accuracy, efficiency and performance of various vision-based applications running
on a mobile robot under different environmental complexities. We introduce two RA
systems: 1) a performance/accuracy awareness system and 2) an energy awareness
system.

Designing a computing performance/accuracy RA system is a challenging pro-
cess since usually there exists a trade-off between accuracy and performance. To
increase the accuracy, it is important to process the majority of captured data, which
increases the computational load and, consequently, decreases the computing perfor-
mance. However, discarding the majority of captured data to achieve high perfor-
mance will result in poor accuracy. In this thesis, we address this problem by con-
sidering different aspects of optimization together, i.e., optimizing the software algo-
rithms, filtering the unnecessary data, and tuning the resource management. Based
on this, our proposed idea targets to improve three parts of the system: 1) middle-
ware that monitors and manages resources and calculates throughput errors, 2) the
filtering phase consisting of three phases that discard events from the pipeline, and 3)
vision applications such as a corner detection algorithm, i.e. LC-Harris. In addition
to monitoring and managing the computing resources, i.e. CPU units, the system also
performs filtering and estimation on the raw data. The middleware system monitors
the status of the CPUs and calculates the throughput error at runtime. DVFS is used
by the middleware to manage the CPU frequency based on this error. Because redun-
dant events might degrade the quality of the application, e.g. the corner detection, we
introduce three-layer filtering to improve both accuracy and performance. The Har-
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ris detector uses a scoring technique to detect unique corners; it employs, however,
complex calculations to compute the score. We propose an approximation method
to reduce the computational complexity, which is able to reduce the execution time
by 59% on average. The experiments demonstrate that our method outperforms in
terms of accuracy other state-of-the-art methods, such as eFAST and Arc∗, as well
as achieves the desired throughput consistently under various conditions.

Mobile robots are considered cyber-mechanical devices, i.e., they contain cyber
components, e.g. onboard microcontrollers, along with mechanical components such
as motors. The majority of power-saving approaches in the literature aim to improve
the power efficiency of the robot’s mechanical or cyber parts. Our experiments show
that the cyber and mechanical parts have a strong correlation, and both contribute to
the overall energy consumption of the robot. For example, during slow robot motion,
the cyber parts have a greater impact on the total energy consumption. In contrast,
when the robot moves faster, the majority of the energy is consumed by the mechan-
ical parts. In order to achieve a high energy efficiency of a mobile robot running
vision-based applications, we propose an algorithm to co-manage both mechanical
and cyber parts at runtime. The hill-climbing algorithm is used to find the local
optima through tuning both the voltage of the motors to control the robot’s speed
and the voltage/frequency to control the CPU frequency. In three different cases of
environmental complexity, including low complexity, medium complexity, and high
complexity, the experiments show that our presented algorithm can save energy on
average by 50.5%, 41%, and 30%, respectively.

Vision-based applications such as object tracking, optical flow estimation, and
pose estimation are essential for enabling mobile robots to perform various tasks. In
the past 30 years, the majority of these applications were based on analyzing im-
ages captured by traditional RGB cameras. The problem is that images captured by
these sensors contain a huge amount of background information, i.e. redundant data,
and they observe the scene at a fixed rate, e.g. 60 Hz. Processing and analyzing
these images on a mobile robot is infeasible, which limits mobile robots’ capabil-
ity to perform tasks that require vision-based applications. Event cameras offer a
great solution to these challenges since they observe only brightness changes and
thereby avoid capturing redundant data. Moreover, event cameras require less power
to run: approximately 100 mW compared with 5 W on average for embedded RGB
cameras. These characteristics make them an ideal solution to enable vision-based
applications on mobile robots. Event cameras, like traditional cameras, have dif-
ferent types of noise due to hardware limitations. Eliminating or filtering out this
noise would improve both the performance and accuracy of running applications.
We propose a dynamic denoising algorithm that is capable of filtering out two types
of noise: 1) the background activity noise and 2) the trailing noise. The results show
that the proposed method can achieve and maintain an SNR as high as 13.6 dB in
static environments and as high as 6.7 dB in dynamic scenes. As we mentioned
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previously, event cameras only observe the brightness changes to generate a stream
of asynchronous events. To process that output, we present novel methods to con-
struct event frames and extract unique features from the event stream. The evaluation
results demonstrate that the proposed image construction method can dynamically
construct event frames at various speeds and in different environmental complexities
using the aid of an RGB camera and an IMU. Our edge detection method is able to
extract sharp edges by utilizing the lifetime of events. Lastly, we present a corner
detection algorithm that uses three-stage filtering and an approximation of the Harris
detector to extract unique corners from the event stream.

As future work, there are several potential ways to improve the solutions pre-
sented in this thesis. The denoising method can be improved, for instance, by im-
plementing an AI-based method to model other sources of noise such as hot pixels,
cold pixels, and flickering noise. The challenge is the lack of event-based datasets
required to train the model. Ground truth for such sensors is also difficult to obtain.
An option to resolve this issue is to use self-supervised models or to simulate the
behaviour of an event camera by using complementary sensors (e.g. frame cameras
and IMUs) and generate ground truth events, i.e. true events. The performance man-
agement system can be improved by considering in the optimization problem other
parts that might contribute to the total energy consumption such as communication
units. Furthermore, the performance management system can also be improved by
applying AI-based optimization to find the global optima. This would raise at least
the following challenging questions to address: 1) How much an AI-based model
would contribute to the total energy consumption? 2) How to train a robust model?
3) Which constraints need to be considered in order to generate an accurate model?
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7 Overview of Original Publications

Presented below is a short summary of the published articles related to this thesis.

7.1 Paper I: A Survey on Odometry for Autonomous
Navigation Systems

The development of a navigation system is one of the major challenges in building
a fully autonomous platform. Full autonomy requires a dependable navigation ca-
pability not only in a perfect situation with clear GPS signals, but also in situations
where the GPS is unreliable. Therefore, self-contained odometry systems have at-
tracted much attention recently. This paper provides a general and comprehensive
overview of the state-of-the-art in the field of self-contained, i,e, GPS denied, odom-
etry systems and identifies the out-coming challenges that demand further research
in future. Self-contained odometry methods are categorized into five main types, i.e.,
wheel, inertial, laser, radar, and visual where such categorization is based on the type
of the sensor data being used for the odometry. Most of the research in the field is
focused on analyzing the sensor data exhaustively or partially to extract the vehicle
pose. Different combination and fusion of sensor data in a tightly/loosely coupled
manner and with filtering or optimizing fusion method have been investigated. We
analyze the advantages and weaknesses of each approach in terms of different eval-
uation metrics such as performance, response time, energy efficiency, and accuracy
that can be a useful guideline for researchers and engineers in the field. In the end,
some future research challenges in the field are discussed.

• A comprehensive literature review for odometry approaches in the state-of-
the-art.

Author’s contribution: The author contributed by reviewing and analyzing the
literature to provide a comprehensive literature review and extracting the character-
istics of the state-of-the-art approaches for comparison. Additionally, he contributed
by writing the manuscript.

41



Sherif A.S. Mohamed

7.2 Paper II: Monocular Visual Odometry Based on Hy-
brid Parameterization

Visual odometry (VO) is one of the most challenging techniques in computer vision
for autonomous vehicle/vessels. In VO, the camera pose that also represents the robot
pose in ego-motion is estimated analyzing the features and pixels extracted from the
camera images. Different VO techniques mainly provide different trade-offs among
the resources that are being considered for odometry, such as camera resolution,
computation/communication capacity, power/energy consumption, and accuracy. In
this paper, a hybrid technique is proposed for camera pose estimation by combining
odometry based on triangulation using the long-term period of direct-based odometry
and the short-term period of inverse depth mapping. Experimental results based on
the EuRoC data set shows that the proposed technique significantly outperforms the
traditional direct-based pose estimation method for Micro Aerial Vehicle (MAV),
keeping its potential negative effect on performance negligible.

The primary contribution of this paper is as follows:

• A monocular visual odometry method that utilize a hybrid parameterization,
i.e., long-term triangulation of direct-based odometry and short-term inverse
depth mapping to achieve high accuracy of pose estimation while maintaining
low computational load.

Author’s contribution: The author contributed by investigating the monocular
visual odometry approaches in the literature, developing the algorithm, implement-
ing the algorithm on hardware and performing the evaluation experiments. The au-
thor contributed by writing the manuscript and presenting the work.
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7.3 Paper III: Towards Dynamic Monocular Visual Odom-
etry Based on an Event Camera and IMU Sensor

Visual odometry (VO) and visual simultaneous localization and mapping (V-SLAM)
have gained a lot of attention in the field of autonomous robots due to the high amount
of information per unit cost vision sensors can provide. One main problem in VO
techniques is the high amount of data that a pixelated image has, affecting negatively
the overall performance of such techniques. An event-based camera, as an alterna-
tive to a normal frame-based camera, is a prominent candidate to solve this problem
by considering only pixel changes in consecutive events that can be observed with
high time resolution. However, processing the event data that is captured by event-
based cameras requires specific algorithms to extract and track features applicable
for odometry. We propose a novel approach to process the data of an event-based
camera and use it for odometry. It is a hybrid method that combines the abilities
of event-based and frame-based cameras to reach a near-optimal solution for VO.
Our approach can be split into two main contributions that are 1) using information
theory and non-euclidean geometry to estimate the number of events that should be
processed for efficient odometry and 2) using a normal pixelated frame to determine
the location of features in an event-based camera. The obtained experimental re-
sults show that our proposed technique can significantly increase performance while
keeping the accuracy of pose estimation in an acceptable range.

The primary contribution of this paper is as follows:

• An algorithm to obtain to compute the complexity of the environment, i.e., the
entropy by using the aid of an RGB camera.

• A visual odometry method based on event and frame cameras.

Author’s contribution: The author contributed by reviewing the model of event
cameras, designing and implementing the algorithm, and performing the required
experiments to properly evaluate the algorithm. In addition, writing the manuscript
and presenting the work.
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7.4 Paper IV: Towards real-time edge detection for event
cameras based on lifetime and dynamic slicing

Retinal cameras, such as dynamic vision sensors (DVF), transmit asynchronous events
with ultra-low latency (∼ 10µs) only at significant luminance changes, unlike tradi-
tional CMOS cameras which transmit the absolute brightness of all pixels including
redundant backgrounds. Due to these significant characteristics, they offer great po-
tential to obtain efficient localization of high-speed and agile platforms. Moreover,
event cameras have a high dynamic range (∼ 140dB), which makes them suitable
for platforms that operate indoors in low-lighting scenarios and in outdoor environ-
ments, where the camera might be pointing at a strong light source, e.g. the sun. In
this paper, we propose an algorithm to detect edges in event streams coming from
retinal cameras. To do that, an algorithm is developed to extract edges from events by
augmenting a batch of events with their lifetimes. The lifetime of each event is com-
puted using a local plane fitting technique. We use a batching technique to increase
the frame rate of generated images since events with a high sample rate cause the
processing of a single event to be computationally expensive. The size of the batch
will be adjusted based on the mean optical flow of the previously generated batch.
The obtained experimental results show that our proposed technique can significantly
reduce the response time with the same sharpness in generating the edges.

The key contributions of this paper are as follows:

• An adaptive and robust edge detection algorithm for event based cameras.

• A dynamic batch-based algorithm based on the mean optical flow of previous
batches.

Author’s contribution: The author contributed by reviewing the literature and
design the algorithm. Performing the required experiments and writing the manuscript
and presenting it.
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7.5 Paper V: Dynamic Resource-aware Corner Detec-
tion for Bio-inspired Vision Sensors

Event-based cameras are vision devices that transmit only brightness changes with
low latency and ultra-low power consumption. Such characteristics make event-
based cameras attractive in the field of localization and object tracking in resource-
constrained systems. Since the number of generated events in such cameras is huge,
the selection and filtering of the incoming events are beneficial from both increasing
the accuracy of the features and reducing the computational load. In this paper, we
present an algorithm to detect asynchronous corners form a stream of events in real-
time on embedded systems. The algorithm is called the Three Layer Filtering-Harris
or TLF-Harris algorithm. The algorithm is based on an events’ filtering strategy
whose purpose is 1) to increase the accuracy by deliberately eliminating some in-
coming events, i.e., noise and 2) to improve the real-time performance of the system,
i.e., preserving a constant throughput in terms of input events per second, by discard-
ing unnecessary events with a limited accuracy loss. An approximation of the Harris
algorithm, in turn, is used to exploit its high-quality detection capability with a low-
complexity implementation to enable seamless real-time performance on embedded
computing platforms. The proposed algorithm is capable of selecting the best corner
candidate among neighbors and achieves an average execution time savings of 59%
compared with the conventional Harris score. Moreover, our approach outperforms
the competing methods, such as eFAST, eHarris, and FA-Harris, in terms of real-time
performance, and surpasses Arc* in terms of accuracy.

The key contribution of this paper is as follows:

• A resource-aware system that monitors and controls the internal resources of
the embedded system to achieve the desired throughput consistently.

• A three-layer filtering which removes redundant events from the pipeline to
improve both the accuracy and performance by removing redundant data.

• An approximation of Harris corner detector to improve the computational
complexity of the detector and enable such algorithm to run on embedded
platforms.

Author’s contribution: The author contributed by reviewing state-of-the-art ap-
proaches, designing and implementing the algorithm. In addition, performing the
required experiments, writing the manuscript and presenting the work.
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7.6 Paper VI: DBA-Filter: A Dynamic Background Ac-
tivity Noise Filtering Algorithm for Event cameras

Newly emerged dynamic vision sensors (DVS) offer a great potential over traditional
sensors (e.g., CMOS) since they have a high temporal resolution in the order of µs,
ultra-low power consumption and high dynamic range up to 140 dB compared to
60 dB in frame cameras. Unlike traditional cameras, the output of DVS cameras
is a stream of events that encodes the location of the pixel, time, and polarity of
the brightness change. An event is triggered when the change of brightness, i.e.,
log intensity, of a pixel exceeds a certain threshold. The output of event cameras
often contains a significant amount of noise (outlier events) alongside the signal (in-
lier events). The main cause of that is transistor switch leakage and noise. This
paper presents a dynamic background activity filtering, called DBA-filter, for event
cameras based on an adaptation of the K-nearest neighbor (KNN) algorithm and the
optical flow. Results show that the proposed algorithm is able to achieve a high signal
to noise ratio up to 13.64 dB. event cameras, background filtering, KNN, dynamic,
noise

The key contribution of this paper is as follows:

• An adaptive and dynamic denoising algorithm that removes two types of noise
including the background activity noise and trailing noise.

Author’s contribution: The author contributed by reviewing state-of-the-art ap-
proaches and designing the algorithm. In addition, define a quantitative evaluation
metric and performing the required experiments, writing the manuscript and present-
ing the work.
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7.7 Paper VII: Asynchronous Corner Tracking Algorithm
based on Lifetime of Events for DAVIS Cameras

Event cameras, i.e., the Dynamic and Active-pixel Vision Sensor (DAVIS) ones, cap-
ture the intensity changes in the scene and generates a stream of events in an asyn-
chronous fashion. The output rate of such cameras can reach up to 10 million events
per second in high dynamic environments. DAVIS cameras use novel vision sensors
that mimic human eyes. Their attractive attributes, such as high output rate, High
Dynamic Range (HDR), and high pixel bandwidth, make them an ideal solution
for applications that require high-frequency tracking. Moreover, applications that
operate in challenging lighting scenarios can exploit from the high HDR of event
cameras, i.e., 140 dB compared to 60 dB of traditional cameras. In this paper, a
novel asynchronous corner tracking method is proposed that uses both events and
intensity images captured by a DAVIS camera. The Harris algorithm is used to ex-
tract features, i.e., frame-corners from keyframes, i.e., intensity images. Afterward, a
matching algorithm is used to extract event-corners from the stream of events. Events
are solely used to perform asynchronous tracking until the next keyframe is captured.
Neighboring events, within a window size of 5x5 pixels around the event-corner, are
used to calculate the velocity and direction of extracted event-corners by fitting the
2D planar using a randomized Hough transform algorithm. Experimental evaluation
showed that our approach is able to update the location of the extracted corners up to
100 times during the blind time of traditional cameras, i.e., between two consecutive
intensity images.

The main contributions of this paper are as follows:

• A matching algorithm that filters incoming events and processes only potential
event corner.

• An asynchronous corner tracking algorithm which is based on the life time of
events.

Author’s contribution: The author contributed by reviewing the literature and
designing the algorithm. In addition, performing the required experiments and writ-
ing the manuscript.
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7.8 Paper VIII: Energy-Efficient Mobile Robot Control
via Run-time Monitoring of Environmental Complex-
ity and Computing Workload

We propose an energy-efficient controller to minimize the energy consumption of a
mobile robot by dynamically manipulating the mechanical and computational ac-
tuators of the robot. The mobile robot performs real-time vision-based applica-
tions based on an event-based camera. The actuators of the controller are CPU
voltage/frequency for the computation part and motor voltage for the mechanical
part. We show that independently considering speed control of the robot and volt-
age/frequency control of the CPU does not necessarily result in an energy-efficient
solution. In fact, to obtain the highest efficiency, the computation and mechanical
parts should be controlled together in synergy. We propose a fast hill-climbing opti-
mization algorithm to allow the controller to find the best CPU/motor configuration
at run-time and whenever the mobile robot is facing a new environment during its
travel. Experimental results on a robot with Brushless DC Motors, Jetson TX2 board
as the computing unit, and a DAVIS-346 event-based camera show that the proposed
control algorithm can save battery energy by an average of 50.5%, 41%, and 30%, in
low-complexity, medium-complexity, and high-complexity environments, over base-
lines.

The main contribution of this paper is as follows:

• An energy-aware system that enables complex vision-based applications on
mobile robots.

• An adaptive hill-climbing to co-optimize both the mechanical and computa-
tional parts of a mobile robot.

Author’s contribution: The author contributed by reviewing state-of-the-art ap-
proaches, designing and implementing the algorithm on a mobile robot. In addi-
tion, performing the required experiments, writing the manuscript and presenting the
work.
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