45 research outputs found

    Genetic diversity Goals and Targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework

    Get PDF
    Genetic diversity among and within populations of all species is necessary for people and nature to survive and thrive in a changing world. Over the past three years, commitments for conserving genetic diversity have become more ambitious and specific under the Convention on Biological Diversity’s (CBD) draft post-2020 global biodiversity framework (GBF). This Perspective article comments on how goals and targets of the GBF have evolved, the improvements that are still needed, lessons learned from this process, and connections between goals and targets and the actions and reporting that will be needed to maintain, protect, manage and monitor genetic diversity. It is possible and necessary that the GBF strives to maintain genetic diversity within and among populations of all species, to restore genetic connectivity, and to develop national genetic conservation strategies, and to report on these using proposed, feasible indicators

    Les Paradis du monde : L'art populaire du Québec

    No full text
    This work in two parts on Quebec's popular art brings together interpretive essays on three major collections in the Canadian Museum of Civilization, as well as statements by the artists and collectors. The authors attack the problematic of the collection, emphasize the arbitrary nature of the mode of gathering in order to create a museum's collection, and deepen aesthetic questions reconnected to the setting up of an exhibition of popular art. Concise biographical notes. 61 bibl. ref

    Adaptation of Farming Practices Could Buffer Effects of Climate Change on Northern Prairie Wetlands

    No full text
    Wetlands of the Prairie Pothole Region of North America are vulnerable to climate change. Adaptation of farming practices to mitigate adverse impacts of climate change on wetland water levels is a potential watershed management option. We chose a modeling approach (WETSIM 3.2) to examine the effects of changes in climate and watershed cover on the water levels of a semi-permanent wetland in eastern South Dakota. Land-use practices simulated were unmanaged grassland, grassland managed with moderately heavy grazing, and cultivated crops. Climate scenarios were developed by adjusting the historical climate in combinations of 2uC and 4uC air temperature and 610% precipitation. For these climate change scenarios, simulations of land use that produced water levels equal to or greater than unmanaged grassland under historical climate were judged to have mitigative potential against a drier climate. Water levels in wetlands surrounded by managed grasslands were significantly greater than those surrounded by unmanaged grassland. Management reduced both the proportion of years the wetland went dry and the frequency of dry periods, producing the most dynamic vegetation cycle for this modeled wetland. Both cultivated crops and managed grassland achieved water levels that were equal or greater than unmanaged grassland under historical climate for the 2uC rise in air temperature, and the 2uC rise plus 10% increase in precipitation scenarios. Managed grassland also produced water levels that were equal or greater than unmanaged grassland under historical climate for the 4°C rise plus 10% increase in precipitation scenario. Although these modeling results stand as hypotheses, they indicate that amelioration potential exists for a change in climate up to an increase of 2°C or 4°C with a concomitant 10% increase in precipitation. Few empirical data exist to verify the results of such land-use simulations; however, adaptation of farming practices is one possible mitigation avenue available for prairie wetlands

    GABAergic modulation of olfactomotor transmission in lampreys.

    No full text
    Odor-guided behaviors, including homing, predator avoidance, or food and mate searching, are ubiquitous in animals. It is only recently that the neural substrate underlying olfactomotor behaviors in vertebrates was uncovered in lampreys. It consists of a neural pathway extending from the medial part of the olfactory bulb (medOB) to locomotor control centers in the brainstem via a single relay in the caudal diencephalon. This hardwired olfactomotor pathway is present throughout life and may be responsible for the olfactory-induced motor behaviors seen at all life stages. We investigated modulatory mechanisms acting on this pathway by conducting anatomical (tract tracing and immunohistochemistry) and physiological (intracellular recordings and calcium imaging) experiments on lamprey brain preparations. We show that the GABAergic circuitry of the olfactory bulb (OB) acts as a gatekeeper of this hardwired sensorimotor pathway. We also demonstrate the presence of a novel olfactomotor pathway that originates in the non-medOB and consists of a projection to the lateral pallium (LPal) that, in turn, projects to the caudal diencephalon and to the mesencephalic locomotor region (MLR). Our results indicate that olfactory inputs can induce behavioral responses by activating brain locomotor centers via two distinct pathways that are strongly modulated by GABA in the OB. The existence of segregated olfactory subsystems in lampreys suggests that the organization of the olfactory system in functional clusters may be a common ancestral trait of vertebrates
    corecore