339 research outputs found

    Characterizing spiral arm and interarm star formation

    Get PDF
    Interarm star formation contributes significantly to a galaxy's star formation budget, and provides an opportunity to study stellar birthplaces unperturbed by spiral arm dynamics. Using optical integral field spectroscopy of the nearby galaxy NGC 628 with VLT/MUSE, we construct Halpha maps including detailed corrections for dust extinction and stellar absorption to identify 391 HII regions at 35pc resolution over 12 kpc^2. Using tracers sensitive to the underlying gravitational potential, we associate HII regions with either arm (271) or interarm (120) environments. Using our full spectral coverage of each region, we find that most HII region physical properties (luminosity, size, metallicity, ionization parameter) are independent of environment. We calculate the fraction of Halpha luminosity due to the diffuse ionized gas (DIG) background contaminating each HII region, and find the DIG surface brightness to be higher within HII regions compared to the surroundings, and slightly higher within arm HII regions. Use of the temperature sensitive [SII]/Halpha line ratio map instead of the Halpha surface brightness to identify HII region boundaries does not change this result. Using the dust attenuation as a tracer of the gas, we find depletion times consistent with previous work (2 x 10^9 yr) with no differences between the arm and interarm, however this is very sensitive to the DIG correction. Unlike molecular clouds, which can be dynamically affected by the galactic environment, we see fairly consistent HII region properties in both arm and interarm environments. This suggests either a difference in arm star formation and feedback, or a decoupling of dense star forming clumps from the more extended surrounding molecular gas.Comment: 10 pages, 4 figures, 1 table, accepted for publication in Ap

    Explaining two circumnuclear star forming rings in NGC5248

    Full text link
    The distribution of gas in the central kiloparsec of a galaxy has a dynamically rapid evolution. Nonaxisymmetries in the gravitational potential of the galactic disk, such as a large scale stellar bar or spiral, can lead to significant radial motion of gaseous material from larger radii to the central region. The large influx of gas and the subsequent star formation keep the central region constantly changing. However, the ability of gas to reach the nucleus proper to fuel an AGN phase is not guaranteed. Gas inflow can be halted at a circumnuclear star forming ring several hundred parsec away. The nearby galaxy NGC5248 is especially interesting in this sense since it is said to host 2 circumnuclear star forming rings at 100pc and 370pc from its quiescent nucleus. Here we present new subarcsecond PdBI+30m CO(2-1) emission line observations of the central region. For the first time the molecular gas distribution at the smallest stellar ring is resolved into a gas ring, consistent with the presence of a quiescent nucleus. However, the molecular gas shows no ring structure at the larger ring. We combine analyses of the gaseous and stellar content in the central kiloparsec of this galaxy to understand the gas distribution and dynamics of this star forming central region. We discuss the probability of two scenarios leading to the current observations, given our full understanding of this system, and discuss whether there are really two circumnuclear star forming rings in this galaxy.Comment: Accepted for publication in A&A, 14pages + long tabl

    The Lifetime of Grand Design

    Get PDF
    The lifetime of the structure in grand design spiral galaxies is observationally ill-determined, but is essentially set by how accurately the pattern's rotation can be characterized by a single angular pattern speed. This paper derives a generalized version of the Tremaine-Weinberg method for observationally determining pattern speeds, in which the pattern speed is allowed to vary arbitrarily with radius. The departures of the derived pattern speed from a constant then provides a simple metric of the lifetime of the spiral structure. Application of this method to CO observations of NGC 1068 reveal that the pattern speed of the spiral structure in this galaxy varies rapidly with radius, and that the lifetime of the spiral structure is correspondingly very short. If this result turns out to be common in grand-design spiral galaxies, then these features will have to be viewed as highly transient phenomena.Comment: 6 pages, 3 figures, accepted for publication in MNRA

    On the Tremaine-Weinberg method: how much can we trust gas tracers to measure pattern speeds?

    Get PDF
    Pattern speeds are a fundamental parameter of the dynamical features (e.g. bars, spiral arms) of a galaxy, setting resonance locations. Pattern speeds are not directly observable, so the Tremaine–Weinberg (TW) method has become the most common method used to measure them in galaxies. However, it has not been tested properly whether this method can straightforwardly be applied to gas tracers, despite this being widely done in the literature. When applied to observations, the TW method may return invalid results, which are difficult to diagnose due to a lack of ground truth for comparison. Although some works applying the TW method to simulated galaxies exist, only stellar populations have been tested. Therefore, here we explore the applicability of the TW method for gas tracers, by applying it to hydrodynamical simulations of galaxies, where we know the true value of the bar pattern speed. We perform some simple tests to see if the TW method has a physically reasonable output. We add different kinds of uncertainties (e.g. in position angle or flux) to the data to mock observational errors based on the magnitude of uncertainty present in the observations. Secondly, we test the method on 3D simulations with chemical networks. We show that in general, applying TW to observations of gas will not recover the true pattern speed. These results have implications for many ‘pattern speeds’ reported in the literature, and based on these tests we also give some best practices for measuring pattern speeds using gas tracers going forwards

    The Mid-IR Contribution Of Dust Enshrouded Stars In Six Nearby Galaxies

    Full text link
    We measure the integrated contributions of dusty AGB stars and other luminous red mid-IR sources to the mid-IR luminosities of 6 galaxies (M81, NGC 2403, NGC 300, M33 and the Magellanic Clouds). We find the dusty AGB stars whose mid-IR fluxes are dominated by dust rather than photospheric emission contribute from 0.6% (M81) to 5.6% (SMC) of the 3.6 micron flux and 1.0% (M81) to 10.1% (SMC) of the 4.5 micron flux. We find a trend of decreasing AGB contribution with increasing galaxy metallicity, luminosity and mass and decreasing SSFR. However, these galaxy properties are strongly correlated in our sample and the simplest explanation of the trend is galaxy metallicity. Bright, red sources other than dusty AGB stars represent a smaller fraction of the luminosity, ~1.2% at 3.6 microns, however their dust is likely cooler and their contributions are likely larger at longer wavelengths. Excluding the SMC, the contribution from these red sources correlates with the specific star formation rate as we would expect for massive stars. In total, after correcting for dust emission at other wavelengths, the dust around AGB stars radiates 0.1-0.8% of the bolometric luminosities of the galaxies. Thus, hot dust emission from AGB and other luminous dusty stars represent a small fraction of the total luminosities of the galaxies but a significant fraction of their mid-IR emissions.Comment: 9 pages, 6 figures, published in ApJ. For a brief video explaining the key results of this paper, see http://www.youtube.com/user/OSUAstronom

    Radial Dependence of the Pattern Speed of M51

    Get PDF
    The grand-design spiral galaxy M51 has long been a crucial target for theories of spiral structure. Studies of this iconic spiral can address the question of whether strong spiral structure is transient (e.g. interaction-driven) or long-lasting. As a clue to the origin of the structure in M51, we investigate evidence for radial variation in the spiral pattern speed using the radial Tremaine-Weinberg (TWR) method. We implement the method on CO observations tracing the ISM-dominant molecular component. Results from the method's numerical implementation--combined with regularization, which smooths intrinsically noisy solutions--indicate two distinct patterns speeds inside 4 kpc at our derived major axis PA=170 deg., both ending at corotation and both significantly higher than the conventionally adopted global value. Inspection of the rotation curve suggests that the pattern speed interior to 2 kpc lacks an ILR, consistent with the leading structure seen in HST near-IR observations. We also find tentative evidence for a lower pattern speed between 4 and 5.3 kpc measured by extending the regularized zone. As with the original TW method, uncertainty in major axis position angle (PA) is the largest source of error in the calculation; in this study, where \delta PA=+/-5 deg. a ~20% error is introduced to the parameters of the speeds at PA=170 deg. Accessory to this standard uncertainty, solutions with PA=175 deg. (also admitted by the data) exhibit only one pattern speed inside 4 kpc, and we consider this circumstance under the semblance of a radially varying PA.Comment: 14 pages in emulateapj format, 12 figures, accepted for publication in Ap

    Comparing [CII], HI, and CO dynamics of nearby galaxies

    Get PDF
    The HI and CO components of the interstellar medium (ISM) are usually used to derive the dynamical mass M_dyn of nearby galaxies. Both components become too faint to be used as a tracer in observations of high-redshift galaxies. In those cases, the 158 μ\mum line of atomic carbon [CII] may be the only way to derive M_dyn. As the distribution and kinematics of the ISM tracer affects the determination of M_dyn, it is important to quantify the relative distributions of HI, CO and [CII]. HI and CO are well-characterised observationally, however, for [CII] only very few measurements exist. Here we compare observations of CO, HI, and [CII] emission of a sample of nearby galaxies, drawn from the HERACLES, THINGS and KINGFISH surveys. We find that within R_25, the average [CII] exponential radial profile is slightly shallower than that of the CO, but much steeper than the HI distribution. This is also reflected in the integrated spectrum ("global profile"), where the [CII] spectrum looks more like that of the CO than that of the HI. For one galaxy, a spectrally resolved comparison of integrated spectra was possible; other comparisons were limited by the intrinsic line-widths of the galaxies and the coarse velocity resolution of the [CII] data. Using high-spectral-resolution SOFIA [CII] data of a number of star forming regions in two nearby galaxies, we find that their [CII] linewidths agree better with those of the CO than the HI. As the radial extent of a given ISM tracer is a key input in deriving M_dyn from spatially unresolved data, we conclude that the relevant length-scale to use in determining M_dyn based on [CII] data, is that of the well-characterised CO distribution. This length scale is similar to that of the optical disk.Comment: Accepted for publication in the Astronomical Journa

    Nearby supernova host galaxies from the CALIFA Survey: II. SN environmental metallicity

    Get PDF
    The metallicity of a supernova (SN) progenitor, together with its mass, is one of the main parameters that rules their outcome. We present a metallicity study of 115 nearby SN host galaxies (0.005<z<0.03) which hosted 142 SNe using Integral Field Spectroscopy (IFS) from the CALIFA survey. Using O3N2 we found no statistically significant differences between the gas-phase metallicities at the locations of the three main SN types (Ia, Ib/c and II) all having ~8.50±\pm0.02 dex. The total galaxy metallicities are also very similar and we argue that this is because our sample consists only of SNe discovered in massive galaxies (log(M/Msun)>10 dex) by targeted searches. We also found no evidence that the metallicity at the SN location differs from the average metallicity at the GCD of the SNe. By extending our SN sample with published metallicities at the SN location, we studied the metallicity distributions for all SN subtypes split into SN discovered in targeted and untargeted searches. We confirm a bias toward higher host masses and metallicities in the targeted searches. Combining data from targeted and untargeted searches we found a sequence from higher to lower local metallicity: SN Ia, Ic, and II show the highest metallicity, which is significantly higher than SN Ib, IIb, and Ic-BL. Our results support the picture of SN Ib resulting from binary progenitors and, at least part of, SN Ic being the result of single massive stars stripped of their outer layers by metallicity driven winds. We studied several proxies of the local metallicity frequently used in the literature and found that the total host metallicity allows for the estimation of the metallicity at the SN location with an accuracy better than 0.08 dex and very small bias. In addition, weak AGNs not seen in total spectra may only weakly bias (by 0.04 dex) the metallicity estimate from integrated spectra. (abridged)Comment: 24 pages, 16 Figures, 13 Tables, Accepted in A&
    • …
    corecore