1,734 research outputs found
NF-kB functions in synaptic signaling and behavior
Ca^(2+)-regulated gene transcription is essential to diverse physiological processes, including the adaptive plasticity associated with learning. We found that basal synaptic input activates the NF-kB transcription factor by a pathway requiring the Ca^(2+)/calmodulin-dependent kinase CaMKII and local submembranous Ca^(2+) elevation. The p65:p50 NF-kB form is selectively localized at synapses; p65-deficient mice have no detectable synaptic NF-kB. Activated NF-kB moves to the nucleus and could directly transmute synaptic signals into altered gene expression. Mice lacking p65 show a selective learning deficit in the spatial version of the radial arm maze. These observations suggest that long-term changes to adult neuronal function caused by synaptic stimulation can be regulated by NF-kB nuclear translocation and gene activation
Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake.
During 1986 planktonic primary production and controlling factors were investigated in a small (A0 = 11.8 · 103 m2, Zmax = 11.5 m) meromictic kettle lake (Mittlerer Buchensee). Annual phytoplankton productivity was estimated to ca 120 gC · m–2 · a–1 (1,42 tC · lake–1 · a–1). The marked thermal stratification of the lake led to irregular vertical distributions of chlorophylla concentrations (Chla) and, to a minor extent, of photosynthesis (Az). Between the depths of 0 to 6 m low Chla concentrations (< 7 mg · m–3) and comparatively high background light attenuation (kw = 0,525 m–1, 77% of total attenuation due to gelbstoff and abioseston) was found. As a consequence, light absorption by algae was low (mean value 17,4%) and self-shading was absent.
Because of the small seasonal variation of Chla concentrations, no significant correlation between Chla and areal photosynthesis (A) was observed. Only in early summer (June–July) biomass appears to influence the vertical distribution of photosynthesis on a bigger scale. Around 8 m depth, low-light adapted algae and phototrophic bacteria formed dense layers. Due to low ambient irradiances, the contribution of these organisms to total primary productivity was small. Primary production and incident irradiance were significantly correlated with each other (r2 = 0.68). Although the maximum assimilation number (Popt) showed a clear dependence upon water temperature (Q10 = 2.31), the latter was of minor importance to areal photosynthesis
Electronic sculpting of ligand-GPCR subtype selectivity:the case of angiotensin II
GPCR subtypes possess distinct functional
and pharmacological profiles,
and thus development of subtype-selective ligands has immense therapeutic
potential. This is especially the case for the angiotensin receptor
subtypes AT1R and AT2R, where a functional negative control has been
described and AT2R activation highlighted as an important cancer drug
target. We describe a strategy to fine-tune ligand selectivity for
the AT2R/AT1R subtypes through electronic control of ligand aromatic-prolyl
interactions. Through this strategy an AT2R high affinity (<i>K</i><sub>i</sub> = 3 nM) agonist analogue that exerted 18,000-fold
higher selectivity for AT2R versus AT1R was obtained. We show that
this compound is a negative regulator of AT1R signaling since it is
able to inhibit MCF-7 breast carcinoma cellular proliferation in the
low nanomolar range
A theoretical insight into the photophysics of psoralen
Psoralen photophysics has been studied on quantum chemistry grounds using the multiconfigurational second-order perturbation method CASPT2. Absorption and emission spectra of the system have been rationalized by computing the energies and properties of the low-lying singlet and triplet excited states. The S1 ππ* state has been determined to be responsible of the lowest absorption and fluorescence bands and to initially carry the population in the photophysical processes related to the phototherapeutic properties of psoralen derivatives. The low-lying T1 ππ* state is, on the other hand, protagonist of the phosphorescence, and its prevalent role in the reactivity of psoralen is suggested to be related to the elongation of the pyrone ring C3–C4 bond, where the spin density is distributed on both carbon atoms. Analysis of energy gaps and spin-orbit coupling elements indicates that the efficient photophysical process leading to the population of the lowest triplet state does not take place at the Franck-Condon region but along the S1 relaxation [email protected] [email protected] [email protected]
Author correction : a global database for metacommunity ecology, integrating species, traits, environment and space
Correction to: Scientific Data https://doi.org/10.1038/s41597-019-0344-7, published online 08 January 202
Author correction : a global database for metacommunity ecology, integrating species, traits, environment and space
Correction to: Scientific Data https://doi.org/10.1038/s41597-019-0344-7, published online 08 January 202
- …
