92 research outputs found

    Algal photophysiology drives darkening and melt of the Greenland Ice Sheet

    Get PDF
    Blooms of Zygnematophycean “glacier algae” lower the bare ice albedo of the Greenland Ice Sheet (GrIS), amplifying summer energy absorption at the ice surface and enhancing meltwater runoff from the largest cryospheric contributor to contemporary sea-level rise. Here, we provide a step change in current understanding of algal-driven ice sheet darkening through quantification of the photophysiological mechanisms that allow glacier algae to thrive on and darken the bare ice surface. Significant secondary phenolic pigmentation (11 times the cellular content of chlorophyll a) enables glacier algae to tolerate extreme irradiance (up to ∼4,000 µmol photons⋅m−2⋅s−1) while simultaneously repurposing captured ultraviolet and short-wave radiation for melt generation. Total cellular energy absorption is increased 50-fold by phenolic pigmentation, while glacier algal chloroplasts positioned beneath shading pigments remain low-light–adapted (Ek ∼46 µmol photons⋅m−2⋅s−1) and dependent upon typical nonphotochemical quenching mechanisms for photoregulation. On the GrIS, glacier algae direct only ∼1 to 2.4% of incident energy to photochemistry versus 48 to 65% to ice surface melting, contributing an additional ∼1.86 cm water equivalent surface melt per day in patches of high algal abundance (∼104 cells⋅mL−1). At the regional scale, surface darkening is driven by the direct and indirect impacts of glacier algae on ice albedo, with a significant negative relationship between broadband albedo (Moderate Resolution Imaging Spectroradiometer [MODIS]) and glacier algal biomass (R2 = 0.75, n = 149), indicating that up to 75% of the variability in albedo across the southwestern GrIS may be attributable to the presence of glacier algae

    Megacity and local contributions to regional air pollution : An aircraft case study over London

    Get PDF
    In July 2017 three research flights circumnavigating the megacity of London were conducted as a part of the STANCO training school for students and early career researchers organised by EUFAR (European Facility for Airborne Research). Measurements were made from the UK's Facility for Airborne Atmospheric Measurements (FAAM) BAe-146-301 atmospheric research aircraft with the aim to sample, characterise and quantify the impact of megacity outflow pollution on air quality in the surrounding region. Conditions were extremely favourable for airborne measurements, and all three flights were able to observe clear pollution events along the flight path. A small change in wind direction provided sufficiently different air mass origins over the 2 d such that a distinct pollution plume from London, attributable marine emissions and a double-peaked dispersed area of pollution resulting from a combination of local and transported emissions were measured. We were able to analyse the effect of London emissions on air quality in the wider region and the extent to which local sources contribute to pollution events. The background air upwind of London was relatively clean during both days; concentrations of CO were 88-95 ppbv, total (measured) volatile organic compounds (VOCs) were 1.6-1.8 ppbv and NOx was 0.7- 0.8 ppbv. Downwind of London, we encountered elevations in all species with CO>100 ppbv, VOCs 2.8-3.8 ppbv, CH4>2080 ppbv and NOx>4 ppbv, and peak concentrations in individual pollution events were higher still. Levels of O3 were inversely correlated with NOx during the first flight, with O3 concentrations of 37 ppbv upwind falling to 26 ppbv in the well-defined London plume. Total pollutant fluxes from London were estimated through a vertical plane downwind of the city. Our calculated CO2 fluxes are within the combined uncertainty of those estimated previously, but there was a greater disparity in our estimates of CH4 and CO. On the second day, winds were lighter and downwind O3 concentrations were elevated to 39-43 ppbv (from 32 to 35 ppbv upwind), reflecting the contribution of more aged pollution to the regional background. Elevations in pollutant concentrations were dispersed over a wider area than the first day, although we also encountered a number of clear transient enhancements from local sources. This series of flights demonstrated that even in a region of megacity outflow, such as the south-east of the UK, local fresh emissions and more distant UK sources of pollution can all contribute substantially to pollution events. In the highly complex atmosphere around a megacity where a high background level of pollution mixes with a variety of local sources at a range of spatial and temporal scales and atmospheric dynamics are further complicated by the urban heat island, the use of pollutant ratios to track and determine the ageing of air masses may not be valid. The individual sources must therefore all be well-characterised and constrained to understand air quality around megacities such as London. Research aircraft offer that capability through targeted sampling of specific sources and longitudinal studies monitoring trends in emission strength and profiles over time

    The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar

    Get PDF
    Mineral dust particles are thought to be an important type of ice-nucleating particle (INP) in the mixedphase cloud regime around the globe. While K-rich feldspar (K-feldspar) has been identified as being a particularly important component of mineral dust for ice nucleation, it has been shown that quartz is also relatively ice-nucleation active. Given quartz typically makes up a substantial proportion of atmospheric desert dust, it could potentially be important for cloud glaciation. Here, we survey the ice-nucleating ability of 10 α-quartz samples (the most common quartz polymorph) when immersed in microlitre supercooled water droplets. Despite all samples being α-quartz, the temperature at which they induce freezing varies by around 12 ◦C for a constant active site density. We find that some quartz samples are very sensitive to ageing in both aqueous suspension and air, resulting in a loss of ice-nucleating activity, while other samples are insensitive to exposure to air and water over many months. For example, the ice-nucleation temperatures for one quartz sample shift down by ∼ 2 ◦C in 1 h and 12 ◦C after 16 months in water. The sensitivity to water and air is perhaps surprising, as quartz is thought of as a chemically resistant mineral, but this observation suggests that the active sites responsible for nucleation are less stable than the bulk of the mineral. We find that the quartz group of minerals is generally less active than K-feldspars by roughly 7 ◦C, although the most active quartz samples are of a similar activity to some K-feldspars with an active site density, ns(T ), of 1 cm−2 at −9◦C. We also find that the freshly milled quartz samples are generally more active by roughly 5 ◦C than the plagioclase feldspar group of minerals and the albite end member has an intermediate activity. Using both the new and literature data, active site density parameterizations have been proposed for freshly milled quartz, K-feldspar, plagioclase and albite. Combining these parameterizations with the typical atmospheric abundance of each mineral supports previous work that suggests that K-feldspar is the most important ice-nucleating mineral in airborne mineral dust

    Molecular profiling of signet ring cell colorectal cancer provides a strong rationale for genomic targeted and immune checkpoint inhibitor therapies

    Get PDF
    We would like to thank all patients whose samples were used in this study. We are also thankful to the Northern Ireland Biobank and Grampian Biorepository for providing us with tissue blocks and patient data; and Dr HG Coleman (Queen’s University Belfast) for her advice on statistical analyses. This work has been carried out with financial support from Cancer Research UK (grant: C11512/A18067), Experimental Cancer Medicine Centre Network (grant: C36697/A15590 from Cancer Research UK and the NI Health and Social Care Research and Development Division), the Sean Crummey Memorial Fund and the Tom Simms Memorial Fund. The Northern Ireland Biobank is funded by HSC Research and Development Division of the Public Health Agency in Northern Ireland and Cancer Research UK through the Belfast CRUK Centre and the Northern Ireland Experimental Cancer Medicine Centre; additional support was received from Friends of the Cancer Centre. The Northern Ireland Molecular Pathology Laboratory which is responsible for creating resources for the Northern Ireland Biobank has received funding from Cancer Research UK, Friends of the Cancer Centre and Sean Crummey Foundation.Peer reviewedPublisher PD

    Study Protocol. Evaluating the life-course health impact of a city-wide system approach to improve air quality in Bradford, UK : A quasi-experimental study with implementation and process evaluation

    Get PDF
    BACKGROUND: Air quality is a major public health threat linked to poor birth outcomes, respiratory and cardiovascular disease, and premature mortality. Deprived groups and children are disproportionately affected. Bradford will implement a Clean Air Zone (CAZ) as part of the Bradford Clean Air Plan (B-CAP) in 2022 to reduce pollution, providing a natural experiment. The aim of the current study is to evaluate the impact of the B-CAP on health outcomes and air quality, inequalities and explore value for money. An embedded process and implementation evaluation will also explore barriers and facilitators to implementation, impact on attitudes and behaviours, and any adverse consequences. METHODS: The study is split into 4 work packages (WP). WP1A: 20 interviews with decision makers, 20 interviews with key stakeholders; 10 public focus groups and documentary analysis of key reports will assess implementation barriers, acceptability and adverse or unanticipated consequences at 1 year post-implementation (defined as point at which charging CAZ goes ‘live’). WP1B: A population survey (n = 2000) will assess travel behaviour and attitudes at baseline and change at 1 year post-implementation). WP2: Routine air quality measurements will be supplemented with data from mobile pollution sensors in 12 schools collected by N = 240 pupil citizen scientists (4 within, 4 bordering and 4 distal to CAZ boundary). Pupils will carry sensors over four monitoring periods over a 12 month period (two pre, and two post-implementation). We will explore whether reductions in pollution vary by CAZ proximity. WP3A: We will conduct a quasi-experimental interrupted time series analysis using a longitudinal routine health dataset of > 530,000 Bradford residents comparing trends (3 years prior vs 3 years post) in respiratory health (assessed via emergency/GP attendances. WP3B: We will use the richly-characterised Born in Bradford cohort (13,500 children) to explore health inequalities in respiratory health using detailed socio-economic data. WP4: will entail a multi-sectoral health economic evaluation to determine value for money of the B-CAP. DISCUSSION: This will be first comprehensive quasi-experimental evaluation of a city-wide policy intervention to improve air quality. The findings will be of value for other areas implementing this type of approach. TRIAL REGISTRATION: ISRCTN67530835 10.1186/ISRCTN67530835 SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12940-022-00942-z

    Anti-cancer effects and mechanism of actions of aspirin analogues in the treatment of glioma cancer

    Get PDF
    INTRODUCTION: In the past 25 years only modest advancements in glioma treatment have been made, with patient prognosis and median survival time following diagnosis only increasing from 3 to 7 months. A substantial body of clinical and preclinical evidence has suggested a role for aspirin in the treatment of cancer with multiple mechanisms of action proposed including COX 2 inhibition, down regulation of EGFR expression, and NF-κB signaling affecting Bcl-2 expression. However, with serious side effects such as stroke and gastrointestinal bleeding, aspirin analogues with improved potency and side effect profiles are being developed. METHOD: Effects on cell viability following 24 hr incubation of four aspirin derivatives (PN508, 517, 526 and 529) were compared to cisplatin, aspirin and di-aspirin in four glioma cell lines (U87 MG, SVG P12, GOS – 3, and 1321N1), using the PrestoBlue assay, establishing IC50 and examining the time course of drug effects. RESULTS: All compounds were found to decrease cell viability in a concentration and time dependant manner. Significantly, the analogue PN517 (IC50 2mM) showed approximately a twofold increase in potency when compared to aspirin (3.7mM) and cisplatin (4.3mM) in U87 cells, with similar increased potency in SVG P12 cells. Other analogues demonstrated similar potency to aspirin and cisplatin. CONCLUSION: These results support the further development and characterization of novel NSAID derivatives for the treatment of glioma

    Newly identified climatically and environmentally significant high-latitude dust sources

    Get PDF
    Dust particles from high latitudes have a potentially large local, regional, and global significance to climate and the environment as short-lived climate forcers, air pollutants, and nutrient sources. Identifying the locations of local dust sources and their emission, transport, and deposition processes is important for understanding the multiple impacts of high-latitude dust (HLD) on the Earth\u27s systems. Here, we identify, describe, and quantify the source intensity (SI) values, which show the potential of soil surfaces for dust emission scaled to values 0 to 1 concerning globally best productive sources, using the Global Sand and Dust Storms Source Base Map (G-SDS-SBM). This includes 64 HLD sources in our collection for the northern (Alaska, Canada, Denmark, Greenland, Iceland, Svalbard, Sweden, and Russia) and southern (Antarctica and Patagonia) high latitudes. Activity from most of these HLD sources shows seasonal character. It is estimated that high-latitude land areas with higher (SI ≥0.5), very high (SI ≥0.7), and the highest potential (SI ≥0.9) for dust emission cover >1 670 000 km2^{2}, >560 000 km2^{2}, and >240 000 km2^{2}, respectively. In the Arctic HLD region (≥60^{∘} N), land area with SI ≥0.5 is 5.5 % (1 035 059 km2^{2}), area with SI ≥0.7 is 2.3 % (440 804 km2^{2}), and area with SI ≥0.9 is 1.1 % (208 701 km2^{2}). Minimum SI values in the northern HLD region are about 3 orders of magnitude smaller, indicating that the dust sources of this region greatly depend on weather conditions. Our spatial dust source distribution analysis modeling results showed evidence supporting a northern HLD belt, defined as the area north of 50^{∘} N, with a “transitional HLD-source area” extending at latitudes 50–58∘ N in Eurasia and 50–55^{∘} N in Canada and a “cold HLD-source area” including areas north of 60^{∘} N in Eurasia and north of 58^{∘} N in Canada, with currently “no dust source” area between the HLD and low-latitude dust (LLD) dust belt, except for British Columbia. Using the global atmospheric transport model SILAM, we estimated that 1.0 % of the global dust emission originated from the high-latitude regions. About 57 % of the dust deposition in snow- and ice-covered Arctic regions was from HLD sources. In the southern HLD region, soil surface conditions are favorable for dust emission during the whole year. Climate change can cause a decrease in the duration of snow cover, retreat of glaciers, and an increase in drought, heatwave intensity, and frequency, leading to the increasing frequency of topsoil conditions favorable for dust emission, which increases the probability of dust storms. Our study provides a step forward to improve the representation of HLD in models and to monitor, quantify, and assess the environmental and climate significance of HLD
    corecore