114 research outputs found

    An integrated approach to assess pupping areas and natal origins in a Conservation Dependent shark, Galeorhinus galeus Matthew N.

    Get PDF
    Knowledge around reproductive movements and habitat use can be central to understanding the life histories of animal populations. Such knowledge can be especially important for managing recovery of populations depleted by human over-exploitation and habitat degradation. In marine environments, clarifying animal movements and habitat use can be difficult given the practical and logistical constraints of studying them. For my research I therefore integrate diverse techniques to cast light on reproductive movements and habitat use of the Conservation Dependent school shark Galeorhinus galeus, where conventional methodologies have left important knowledge gaps unanswered. A national rebuilding plan for the species highlighted a lack of knowledge around whether all female G. galeus migrate to historically identified pupping areas around Tasmania and Bass Strait in the south-eastern range of the species as current management assumes. Alternatively, reproductive movements and habitats may be more varied in extent and location, including pupping areas in South Australia to the northwest where aggregations of pregnant females occur. My overarching aim was to assess the spatial distribution of G. galeus pupping areas in southern Australia and the extent of shared natal origins among populations. I use: (1) element signatures in calcified shark vertebrae that derive from water chemistry and diet in birth areas as natural tags to test whether sharks from different populations recruit from common or different pupping areas, (2) energetic analyses to assess constraints on pup dispersal from pupping areas and whether pups caught in South Australia could feasibly have dispersed from known pupping areas around Tasmania and Bass Strait, and (3) satellite archival tags to track movements of pregnant G. galeus tagged in South Australia to assess pupping movements and the spatial distribution of likely pupping areas. My findings increase our knowledge of the extent and plasticity of reproductive movements and areas used by G. galeus and address several assumptions, on which current management is based, that conventional techniques such as mark-recapture studies and genetic investigations had left open to speculation. A review of elasmobranch vertebral chemistry analysis and ground-truthing laboratory experiments establish the utility of shark vertebrae as sources for natural tags. Element signatures were consistent among related time-resolved portions of the same and adjacent vertebrae, while commonly used bleach preparation did not affect element signatures for a range of elements, validating use of elasmobranch vertebrae as biogenic archives for microchemistry analyses. Post-natal element signatures from three cohorts of juvenile and sub-adult G. galeus were compared between populations in South Australia and Bass Strait. Signatures differed among populations, indicating use of different pupping areas and not supporting the previous assumption of uniform female migrations to common pupping areas. Bioenergetic analyses established an energy budget and assessed constraints on dispersal of G. galeus pups from pupping areas. High energetic costs of growth, small energy reserves, and low concentrations of energy storage lipids relative to adults indicated a trade-off prioritising growth over dispersal in pups. Newborn pups in South Australia are shown to likely be born locally rather than migrants from distant, traditionally identified pupping areas. Satellite archival tagging of pregnant females found that some remained resident in South Australia over the pupping season (November–January), some migrated to the region of known pupping areas around Tasmania and Bass Strait, and one migrated to New Zealand. Given that a single mixed stock is known to exist, this indicates partial female migration with likely pupping areas stretching from the Great Australian Bight to New Zealand that are far less spatially constrained than assumed. This thesis therefore achieved its main aim of assessing whether the spatial distribution of G. galeus pupping areas and uniformity of female migratory behaviour in southern Australia conformed to current assumptions. Furthermore, it confirmed South Australia is a reproductively important area for school shark. Allocation of resources to future study of reproductive behaviours and habitats in South Australia would better inform management and enhance prospects for successful recovery of the species.Thesis (Ph.D.) -- University of Adelaide, School of Biological Sciences, 201

    Untangling multi-species fisheries data with species distribution models

    Get PDF
    Long-term trends in fisheries catch are useful to monitor effects of fishing on wild populations. However, fisheries catch data are often aggregated in multi-species complexes, complicating assessments of individual species. Non-target species are often grouped together in this way, but this becomes problematic when increasingly common shifts toward targeting incidental species demand closer management focus at the species level. Species distribution models (SDMs) offer an under-utilised tool to allocate aggregated catch data among species for individual assessments. Here, we present a case study of two shovel-nosed lobsters (Thenus spp.), previously caught incidentally and recorded together in logbook records, to illustrate the design and use of catch allocation SDMs to untangle multi-species data for stock assessments of individual species. We demonstrate how catch allocation SDMs reveal previously masked species-specific catch trends from aggregated data and can identify shifts in fishing behaviour, e.g., changes in target species. Finally, we review key assumptions and limitations of this approach that may arise when applied across a broad geographic or taxonomic scope. Our aim is to provide a template to assist researchers and managers seeking to assess stocks of individual species using aggregated multi-species data

    Concentrating Membrane Proteins Using Asymmetric Traps and AC Electric Fields

    Get PDF
    Membrane proteins are key components of the plasma membrane and are responsible for control of chemical ionic gradients, metabolite and nutrient transfer, and signal transduction between the interior of cells and the external environment. Of the genes in the human genome, 30% code for membrane proteins (Krogh et al. J. Mol. Biol.2001, 305, 567). Furthermore, many FDA-approved drugs target such proteins (Overington et al. Nat. Rev. Drug Discovery2006, 5, 993). However, the structure-function relationships of these are notably sparse because of difficulties in their purification and handling outside of their membranous environment. Methods that permit the manipulation of membrane components while they are still in the membrane would find widespread application in separation, purification, and eventual structure-function determination of these species (Poo et al. Nature1977, 265, 602). Here we show that asymmetrically patterned supported lipid bilayers in combination with AC electric fields can lead to efficient manipulation of charged components. We demonstrate the concentration and trapping of such components through the use of a “nested trap” and show that this method is capable of yielding an approximately 30-fold increase in the average protein concentration. Upon removal of the field, the material remains trapped for several hours as a result of topographically restricted diffusion. Our results indicate that this method can be used for concentrating and trapping charged membrane components while they are still within their membranous environment. We anticipate that our approach could find widespread application in the manipulation and study of membrane proteins

    The Pan-STARRS Moving Object Processing System

    Full text link
    We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves > 99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a non-physical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains >99.5% efficient at detecting objects on a single night but drops to 80% efficiency at producing orbits for objects detected on multiple nights. This loss is primarily due to configurable MOPS processing limits that are not yet tuned for the Pan-STARRS1 mission. The core MOPS software package is the product of more than 15 person-years of software development and incorporates countless additional years of effort in third-party software to perform lower-level functions such as spatial searching or orbit determination. We describe the high-level design of MOPS and essential subcomponents, the suitability of MOPS for other survey programs, and suggest a road map for future MOPS development.Comment: 57 Pages, 26 Figures, 13 Table

    Genetic diversity and connectivity of southern right whales (Eubalaena australis) found in the Brazil and Chile-Peru wintering grounds and the South Georgia (Islas Georgias del Sur) feeding ground

    Get PDF
    As species recover from exploitation, continued assessments of connectivity and population structure are warranted to provide information for conservation and management. This is particularly true in species with high dispersal capacity, such as migratory whales, where patterns of connectivity could change rapidly. Here we build on a previous long-term, large-scale collaboration on southern right whales (Eubalaena australis) to combine new (nnew) and published (npub) mitochondrial (mtDNA) and microsatellite genetic data from all major wintering grounds and, uniquely, the South Georgia (Islas Georgias del Sur: SG) feeding grounds. Specifically, we include data from Argentina (npub mtDNA/microsatellite=208/46), Brazil (nnew mtDNA/microsatellite=50/50), South Africa (nnew mtDNA/microsatellite=66/77, npub mtDNA/microsatellite=350/47), Chile-Peru (nnew mtDNA/microsatellite=1/1), the Indo-Pacific (npub mtDNA/microsatellite=769/126), and SG (npub mtDNA/microsatellite=8/0, nnew mtDNA/microsatellite=3/11) to investigate the position of previously unstudied habitats in the migratory network: Brazil, SG and Chile-Peru. These new genetic data show connectivity between Brazil and Argentina, exemplified by weak genetic differentiation and the movement of one genetically identified individual between the South American grounds. The single sample from Chile-Peru had a mtDNA haplotype previously only observed in the Indo-Pacific and had a nuclear genotype that appeared admixed between the Indo-Pacific and South Atlantic, based on genetic clustering and assignment algorithms. The SG samples were clearly South Atlantic, and were more similar to the South American than the South African wintering grounds. This study highlights how international collaborations are critical to provide context for emerging or recovering regions, like the SG feeding ground, as well as those that remain critically endangered, such as Chile-Peru

    Zds2p Regulates Swe1p-dependent Polarized Cell Growth in Saccharomyces cerevisiae via a Novel Cdc55p Interaction Domain

    Get PDF
    A C-terminal region in Zds2p (ZH4) is required for regulation of Swe1p-dependent polarized cell growth and this region is necessary and sufficient for interaction with protein phosphatase 2A regulatory subunit, Cdc55p. Our results indicate that the Zds proteins regulate the Swe1p-dependent G2/M checkpoint in a CDC55-dependent manner

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Apophis planetary defense campaign

    Get PDF
    We describe results of a planetary defense exercise conducted during the close approach to Earth by the near-Earth asteroid (99942) Apophis during 2020 December–2021 March. The planetary defense community has been conducting observational campaigns since 2017 to test the operational readiness of the global planetary defense capabilities. These community-led global exercises were carried out with the support of NASA's Planetary Defense Coordination Office and the International Asteroid Warning Network. The Apophis campaign is the third in our series of planetary defense exercises. The goal of this campaign was to recover, track, and characterize Apophis as a potential impactor to exercise the planetary defense system including observations, hypothetical risk assessment and risk prediction, and hazard communication. Based on the campaign results, we present lessons learned about our ability to observe and model a potential impactor. Data products derived from astrometric observations were available for inclusion in our risk assessment model almost immediately, allowing real-time updates to the impact probability calculation and possible impact locations. An early NEOWISE diameter measurement provided a significant improvement in the uncertainty on the range of hypothetical impact outcomes. The availability of different characterization methods such as photometry, spectroscopy, and radar provided robustness to our ability to assess the potential impact risk
    corecore