1,322 research outputs found
Quantitative X-ray microradiography for high-throughput phenotyping of osteoarthritis in mice
Objective To investigate and validate digital X-ray microradiography as a novel, high-throughput and cost-effective screening approach to identify abnormal joint phenotypes in mice. Method Digital X-ray microradiography was used to quantify the subchondral bone mineral content (BMC) in the medial tibial plateau. Accuracy and reproducibility of the method were determined in 22 samples from C57BL/6(B6Brd;B6Dnk;B6N-Tyrc-Brd) wild-type mice. The method was then validated in wild-type mice that had undergone surgical destabilisation of medial meniscus (DMM) and in a genetically modified mouse strain with an established increase in trabecular bone mass. Results The measurement of subchondral BMC by digital X-ray microradiography had a coefficient of variation of 3.6%. Digital X-ray microradiography was able to demonstrate significantly increased subchondral BMC in the medial tibial plateau of male mice 4 and 8 weeks after DMM surgery and in female mice 8 weeks after surgery. Furthermore, digital X-ray microradiography also detected the increase in subchondral BMC in a genetically modified mouse strain with high trabecular bone mass. Conclusion Quantitation of subchondral BMC by digital X-ray microradiography is a rapid, sensitive and cost-effective method to identify abnormal joint phenotypes in mice of both genders at several ages
The use of percutaneous coronary intervention in black and white veterans with acute myocardial infarction
BACKGROUND: It is uncertain whether black white differences in the use of percutaneous coronary intervention (PCI) persist in the era of drug eluting stents. The purpose of this study is to determine if black veterans with acute myocardial infarction (AMI) are less likely to receive PCI than their white counterparts. METHODS: This study included 680 black and 3529 white veterans who were admitted to Veterans Health Administration (VHA) medical centers between July 2003 and August 2004. Information for this study was collected as part of the VHA External Peer Review Program for quality monitoring and improvement for a variety of medical conditions and procedures, including AMI. In addition, Department of Veterans Affairs workload files were used to determine PCI utilization after hospital discharge. Standard statistical methods including the Chi-square, 2 sample t-test, and logistic regression with a cluster correction for medical center were used to assess the association between race and the use of PCI ≤ 30 days from admission. RESULTS: Black patients were younger, more often had diabetes mellitus, renal disease, or dementia and less often had lipid disorders, previous coronary artery bypass surgery, or chronic obstructive pulmonary disease than their white counterparts. Equal proportions of blacks and whites underwent cardiac catheterization ≤ 30 days after admission, but the former were less likely to undergo PCI (32% vs. 40%, p < 0.0001). This difference persisted after multivariate adjustment, although measures of the extent of coronary artery disease were not available. CONCLUSION: Given the equivalent use of cardiac catheterization, it is possible that less extensive or minimal coronary artery disease in black patients could account for the observed difference
Apparent diffusion coefficient for molecular subtyping of non-gadolinium-enhancing WHO grade II/III glioma: volumetric segmentation versus two-dimensional region of interest analysis
OBJECTIVES: To investigate if quantitative apparent diffusion coefficient (ADC) measurements can predict genetic subtypes of non-gadolinium-enhancing gliomas, comparing whole tumour against single slice analysis. METHODS: Volumetric T2-derived masks of 44 gliomas were co-registered to ADC maps with ADC mean (ADCmean) calculated. For the slice analysis, two observers placed regions of interest in the largest tumour cross-section. The ratio (ADCratio) between ADCmeanin the tumour and normal appearing white matter was calculated for both methods. RESULTS: Isocitrate dehydrogenase (IDH) wild-type gliomas showed the lowest ADC values throughout (p < 0.001). ADCmeanin the IDH-mutant 1p19q intact group was significantly higher than in the IDH-mutant 1p19q co-deleted group (p < 0.01). A volumetric ADCmeanthreshold of 1201 × 10-6mm2/s identified IDH wild-type with a sensitivity of 83% and a specificity of 86%; a volumetric ADCratiocut-off value of 1.65 provided a sensitivity of 80% and a specificity of 92% (area under the curve (AUC) 0.9-0.94). A slice ADCratiothreshold for observer 1 (observer 2) of 1.76 (1.83) provided a sensitivity of 80% (86%), specificity of 91% (100%) and AUC of 0.95 (0.96). The intraclass correlation coefficient was excellent (0.98). CONCLUSIONS: ADC measurements can support the distinction of glioma subtypes. Volumetric and two-dimensional measurements yielded similar results in this study. KEY POINTS: • Diffusion-weighted MRI aids the identification of non-gadolinium-enhancing malignant gliomas • ADC measurements may permit non-gadolinium-enhancing glioma molecular subtyping • IDH wild-type gliomas have lower ADC values than IDH-mutant tumours • Single cross-section and volumetric ADC measurements yielded comparable results in this study
mRNA Display Design of Fibronectin-based Intrabodies That Detect and Inhibit Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein
The nucleocapsid (N) protein of severe acute respiratory syndrome (SARS) coronavirus plays important roles in both viral replication and modulation of host cell processes. New ligands that target the N protein may thus provide tools to track the protein inside cells, detect interaction hot spots on the protein surface, and discover sites that could be used to develop new anti-SARS therapies. Using mRNA display selection and directed evolution, we designed novel antibody-like protein affinity reagents that target SARS N protein with high affinity and selectivity. Our libraries were based on an 88-residue variant of the 10th fibronectin type III domain from human fibronectin (10Fn3). This selection resulted in eight independent 10Fn3 intrabodies, two that require the N-terminal domain for binding and six that recognize the C terminus, one with K_d = 1.7 nM. 10Fn3 intrabodies are well expressed in mammalian cells and are relocalized by N in SARS-infected cells. Seven of the selected intrabodies tested do not perturb cellular function when expressed singly in vivo and inhibit virus replication from 11- to 5900-fold when expressed in cells prior to infection. Targeting two sites on SARS-N simultaneously using two distinct 10Fn3s results in synergistic inhibition of virus replication
Filtration‐histogram based magnetic resonance texture analysis (Mrta) for the distinction of primary central nervous system lymphoma and glioblastoma
Primary central nervous system lymphoma (PCNSL) has variable imaging appearances, which overlap with those of glioblastoma (GBM), thereby necessitating invasive tissue diagnosis. We aimed to investigate whether a rapid filtration histogram analysis of clinical MRI data supports the distinction of PCNSL from GBM. Ninety tumours (PCNSL n = 48, GBM n = 42) were analysed using pre‐treatment MRI sequences (T1‐weighted contrast‐enhanced (T1CE), T2‐weighted (T2), and apparent diffusion coefficient maps (ADC)). The segmentations were completed with proprietary texture analysis software (TexRAD version 3.3). Filtered (five filter sizes SSF = 2–6 mm) and unfil-tered (SSF = 0) histogram parameters were compared using Mann‐Whitney U non‐parametric test-ing, with receiver operating characteristic (ROC) derived area under the curve (AUC) analysis for significant results. Across all (n = 90) tumours, the optimal algorithm performance was achieved using an unfiltered ADC mean and the mean of positive pixels (MPP), with a sensitivity of 83.8%, specificity of 8.9%, and AUC of 0.88. For subgroup analysis with >1/3 necrosis masses, ADC permit-ted the identification of PCNSL with a sensitivity of 96.9% and specificity of 100%. For T1CE‐derived regions, the distinction was less accurate, with a sensitivity of 71.4%, specificity of 77.1%, and AUC of 0.779. A role may exist for cross‐sectional texture analysis without complex machine learning models to differentiate PCNSL from GBM. ADC appears the most suitable sequence, especially for necrotic lesion distinction
The role of mutation rate variation and genetic diversity in the architecture of human disease
Background
We have investigated the role that the mutation rate and the structure of genetic variation at a locus play in determining whether a gene is involved in disease. We predict that the mutation rate and its genetic diversity should be higher in genes associated with disease, unless all genes that could cause disease have already been identified.
Results
Consistent with our predictions we find that genes associated with Mendelian and complex disease are substantially longer than non-disease genes. However, we find that both Mendelian and complex disease genes are found in regions of the genome with relatively low mutation rates, as inferred from intron divergence between humans and chimpanzees, and they are predicted to have similar rates of non-synonymous mutation as other genes. Finally, we find that disease genes are in regions of significantly elevated genetic diversity, even when variation in the rate of mutation is controlled for. The effect is small nevertheless.
Conclusions
Our results suggest that gene length contributes to whether a gene is associated with disease. However, the mutation rate and the genetic architecture of the locus appear to play only a minor role in determining whether a gene is associated with disease
Nanotoxicology: characterizing the scientific literature, 2000–2007
Understanding the toxicity of nanomaterials and nano-enabled products is important for human and environmental health and safety as well as public acceptance. Assessing the state of knowledge about nanotoxicology is an important step in promoting comprehensive understanding of the health and environmental implications of these new materials. To this end, we employed bibliometric techniques to characterize the prevalence and distribution of the current scientific literature. We found that the nano-toxicological literature is dispersed across a range of disciplines and sub-fields; focused on in vitro testing; often does not specify an exposure pathway; and tends to emphasize acute toxicity and mortality rather than chronic exposure and morbidity. Finally, there is very little research on consumer products, particularly on their environmental fate, and most research is on the toxicity of basic nanomaterials. The implications for toxicologists, regulators and social scientists studying nanotechnology and society are discussed
Seasonal change in the daily timing of behaviour of the common vole, Microtus arvalis
1. Seasonal effects on daily activity patterns in the common vole were established by periodic trapping in the field and continuous year round recording of running wheel and freeding activity in cages exposed to natural meteorological conditions.
2. Trapping revealed decreased nocturnality in winter as compared to summer. This was paralelled by a winter reduction in both nocturnal wheel running and feeding time in cages.
3. Frequent trap checks revealed a 2 h rhythm in daytime catches in winter, not in summer. Cage feeding activity in daytime was always organized in c. 2 h intervals, but day-to-day variations in phase blurred the rhythm in summer in a summation of individual daily records. Thus both seasonal and short-term temporal patterns are consistent between field trappings and cage feeding records.
4. Variables associated with the seasonal change in daily pattern were: reproductive state (sexually active voles more nocturnal), age (juveniles more nocturnal), temperature (cold days: less nocturnal), food (indicated by feeding experiments), habitat structure (more nocturnal in habitat with underground tunnels).
5. Minor discrepancies between field trappings and cage feeding activity can be explained by assuming increased trappability of voles in winter. Cage wheel running is not predictive of field trapping patterns and is thought to reflect behavioral motivations not associated with feeding but with other activities (e.g., exploratory, escape, interactive behaviour) undetected by current methods, including radiotelemetry and passage-counting.
6. Winter decrease in nocturnality appears to involve a reduction in nocturnal non-feeding and feeding behaviour and is interpreted primarily as an adaptation to reduce energy expenditure in adverse but socially stable winter conditions.
Evaluation of the impact of a school gardening intervention on children's fruit and vegetable intake: a randomised controlled trial.
Background: Current academic literature suggests that school gardening programmes can provide an interactive environment with the potential to change children’s fruit and vegetable intake. This is the first cluster randomised controlled trial (RCT) designed to evaluate whether a school gardening programme can have an effect on children’s fruit and vegetable intake.
Methods: The trial included children from 23 schools; these schools were randomised into two groups, one to receive the Royal Horticultural Society (RHS)-led intervention and the other to receive the less involved Teacher-led intervention. A 24-hour food diary (CADET) was used to collect baseline and follow-up dietary intake 18 months apart. Questionnaires were also administered to evaluate the intervention implementation.
Results: A total of 641 children completed the trial with a mean age of 8.1 years (95% CI: 8.0, 8.4). The unadjusted results from multilevel regression analysis revealed that for combined daily fruit and vegetable intake the Teacher-led group had a higher daily mean change of 8 g (95% CI: −19, 36) compared to the RHS-led group -32 g (95% CI: −60, −3). However, after adjusting for possible confounders this difference was not significant (intervention effect: −40 g, 95% CI: −88, 1; p = 0.06). The adjusted analysis of process measures identified that if schools improved their gardening score by 3 levels (a measure of school gardening involvement - the scale has 6 levels from 0 ‘no garden’ to 5 ‘community involvement’), irrespective of group allocation, children had, on average, a daily increase of 81 g of fruit and vegetable intake (95% CI: 0, 163; p = 0.05) compared to schools that had no change in gardening score.
Conclusions: This study is the first cluster randomised controlled trial designed to evaluate a school gardening intervention. The results have found very little evidence to support the claims that school gardening alone can improve children’s daily fruit and vegetable intake. However, when a gardening intervention is implemented at a high level within the school it may improve children’s daily fruit and vegetable intake by a portion. Improving children’s fruit and vegetable intake remains a challenging task
Transactivation of EGFR by LPS induces COX-2 expression in enterocytes
Necrotizing enterocolitis (NEC) is the leading cause of gastrointestinal morbidity and mortality in preterm infants. NEC is characterized by an exaggerated inflammatory response to bacterial flora leading to bowel necrosis. Bacterial lipopolysaccharide (LPS) mediates inflammation through TLR4 activation and is a key molecule in the pathogenesis of NEC. However, LPS also induces cyclooxygenase-2 (COX-2), which promotes intestinal barrier restitution through stimulation of intestinal cell survival, proliferation, and migration. Epidermal growth factor receptor (EGFR) activation prevents experimental NEC and may play a critical role in LPS-stimulated COX-2 production. We hypothesized that EGFR is required for LPS induction of COX-2 expression. Our data show that inhibiting EGFR kinase activity blocks LPS-induced COX-2 expression in small intestinal epithelial cells. LPS induction of COX-2 requires Src-family kinase signaling while LPS transactivation of EGFR requires matrix metalloprotease (MMP) activity. EGFR tyrosine kinase inhibitors block LPS stimulation of mitogen-activated protein kinase ERK, suggesting an important role of the MAPK/ERK pathway in EGFR-mediated COX-2 expression. LPS stimulates proliferation of IEC-6 cells, but this stimulation is inhibited with either the EGFR kinase inhibitor AG1478, or the selective COX-2 inhibitor Celecoxib. Taken together, these data show that EGFR plays an important role in LPS-induction of COX-2 expression in enterocytes, which may be one mechanism for EGF in inhibition of NEC
- …