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Abstract: Primary central nervous system lymphoma (PCNSL) has variable imaging appearances,
which overlap with those of glioblastoma (GBM), thereby necessitating invasive tissue diagnosis.
We aimed to investigate whether a rapid filtration histogram analysis of clinical MRI data supports
the distinction of PCNSL from GBM. Ninety tumours (PCNSL n = 48, GBM n = 42) were analysed
using pre-treatment MRI sequences (T1-weighted contrast-enhanced (T1CE), T2-weighted (T2), and
apparent diffusion coefficient maps (ADC)). The segmentations were completed with proprietary
texture analysis software (TexRAD version 3.3). Filtered (five filter sizes SSF = 2–6 mm) and unfiltered
(SSF = 0) histogram parameters were compared using Mann-Whitney U non-parametric testing, with
receiver operating characteristic (ROC) derived area under the curve (AUC) analysis for significant
results. Across all (n = 90) tumours, the optimal algorithm performance was achieved using an
unfiltered ADC mean and the mean of positive pixels (MPP), with a sensitivity of 83.8%, specificity
of 8.9%, and AUC of 0.88. For subgroup analysis with >1/3 necrosis masses, ADC permitted the
identification of PCNSL with a sensitivity of 96.9% and specificity of 100%. For T1CE-derived regions,
the distinction was less accurate, with a sensitivity of 71.4%, specificity of 77.1%, and AUC of 0.779.
A role may exist for cross-sectional texture analysis without complex machine learning models to
differentiate PCNSL from GBM. ADC appears the most suitable sequence, especially for necrotic
lesion distinction.

Keywords: brain; lymphoma; glioblastoma; magnetic resonance imaging; computer-assisted

1. Introduction

Primary central nervous system lymphoma (PCSNL) is a highly malignant brain
tumour of lymphocyte origin, with the vast majority (>70%) histologically representing
diffuse large B cell lymphoma [1]. Often, PCNSL occurs sporadically, but immunosuppres-
sion is a known risk factor and the incidence increases with age [2]. The reference standard
treatment consists of an intense chemotherapy regime combining methotrexate, cytarabine,
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thiotepa, and rituximab (MATRix). MATRix substantially improves patient survival [3],
but is associated with frequent and serious side effects, most notably bone marrow toxicity
with neutropenia [4]. For this reason, securing a definitive diagnosis prior to commencing
chemotherapy is vital.

Imaging has a central role in the investigation of PCNSL to identify, localise, and
characterise brain lesions. Findings on anatomical MR imaging include single or multiple
intracerebral masses involving the deep grey nuclei, corpus callosum, and/or periventricu-
lar region [5]. Typical PCNSL shows signals similar to grey matter on spin echo sequences
and tend to exhibit avid, relatively homogenous gadolinium enhancement [6]. However,
the lesion site, morphology, and contrast uptake patterns are all extremely variable [7].
The use of steroids for symptom control reduces lesion conspicuity on imaging and can
render tissue results non-diagnostic. Thus, establishing the diagnosis of PCNSL can be a
prolonged process, with a risk of jeopardising long-term outcomes [3].

A common imaging challenge is to differentiate PCNSL from glioblastoma (GBM), one
of the most common malignant brain tumours in older populations [8]. While typical GBM
features, such as necrosis, haemorrhages, and rim enhancement [9], differ from PCNSL
morphology, each disease can mimic the other on conventional MRI sequences [10].

Diffusion-weighted MRI (DWI) is a physiological imaging technique, which functions
on the presumption that low diffusivity reflects increased cellularity in neoplasia [11]. PCNSL
commonly exhibits lower apparent diffusion coefficient (ADC) values than GBM [12–14],
although ADC values are known to overlap [15–17] so that no clear threshold has been defined
to distinguish the two entities.

Machine learning methods are increasingly used as an adjunct for brain tumour
characterisation in research. Numerous studies have proposed the use of feature extraction
and radiomics models in PCNSL [18–21]. While their results are promising, such modelling
techniques can be prone to “overfitting” and clinical translation remains challenging due
to computational demand and the need for processing expertise. In contrast, filtration-
histogram based MR imaging texture analysis (MRTA) is a workstation integrated software
to examine tumour microstructure without the need for complex machine learning [22,23].
MRTA is based on the assumption that tissue properties are represented in the distribution
of image pixel values, specifically heterogeneity [24], and it functions by drawing regions of
interest onto an image with quantitative analysis initiated via mouse click. The application
performs a filtration step, which serves to remove image noise, and extracts and enhances
image features of different sizes before measuring signal intensity histogram parameters,
which can be compared between regions or between groups of subjects [25]. The MRTA
algorithm previously showed potential to identify glioma characteristics, including an
ability for non-invasive genotyping [26,27]. The current study was performed to test
whether the software would permit a distinction of untreated PCNSL and GBM using
standard clinical MRI sequences.

2. Materials and Methods
2.1. Patient Cohort

Institutional ethics review board approval was obtained, with informed consent
waived for this retrospective imaging data study. Patients with a proven tissue diagnosis of
PCNSL and glioblastoma between 2007 and 2018 were recruited from the neuropathology
records. All 130 identified lymphoma cases and 95 randomly selected glioblastoma cases
were assessed for the exclusion and inclusion criteria. Exclusion criteria were as follows:
patients without pre-treatment gadolinium enhanced MRI scan available, surgical planning
MRI sequences only, artefact obscuring the lesion or close vicinity, lesions obscured by large
volume haemorrhage, secondary CNS (central nervous system) lymphoma, and previous
treatment for CNS lymphoma. Inclusion criteria were: histological confirmation of PCNSL
or glioblastoma and available treatment-naïve MRI imaging. T1-weighted post gadolinium
(T1CE), T2-weighted (T2), and ADC maps were analysed, provided these were performed



J. Pers. Med. 2021, 11, 876 3 of 12

in the same setting to fulfil the requirement to be viewed side by side in the image software.
Figure 1 shows a flow diagram of the patient selection for the study.
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Figure 1. Flow diagram showing patient exclusion and inclusion criteria.

2.2. Tumour Segmentations

For the patients fulfilling inclusion criteria, three pre-treatment MR imaging sequences
(T1CE, T2, and ADC) were analysed. The imaging originated from 1.5T (n = 80) and
3T (n = 10) MRI scanners, and ADC maps were derived from b0 and b1000 imaging
performed with three diffusion gradients. All image interactions were performed blinded
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to histological diagnosis. The segmentations were completed with proprietary texture
analysis software (TexRAD version 3.3, TexRAD Ltd., www.texrad.com, part of Feedback
Plc, Cambridge, UK; first accessed on April 2018) using the freehand drawing tool. For
each individual, the largest tumour cross-section was selected by review of the T1CE
sequence. Two different T1CE regions of interest (ROIs) were manually drawn: the first
ROI incorporated the entire enhancing lesion inclusive of central necrotic components
(ROI_T1a), and the alternative ROI non-enhancing components were excluded (ROI_T1b).
Non-contrast imaging was inspected to verify the extent of tumour enhancement and to
avoid ROI placement in haemorrhagic tumour components. For patients with available
T2 and ADC maps, the ROI_T1a segmentation was directly copied onto the remaining
sequences to derive ROI_T2 and ROI_ADC, respectively. In cases where this was not
possible due to significant differences in alignment, ROIs were manually redrawn on the
T2 and ADC map with the T1CE sequence viewed side by side. To avoid partial volume
effects during MRTA, only measurable lesions, defined as 10 × 10 mm2 or larger, were
subjected to segmentation. Figure 2 shows an example of the segmentation technique.
TexRad currently employs a multiple slice based (2D) segmentation method. From this, the
software generates cumulative histograms from multiple slices prior to statistical analysis;
therefore, the results are expected to be representative of a volumetric (3D) segmentation.
Furthermore, it is likely that a fully implemented 3D segmentation (as compared to a
multiple slice based 2D segmentation as implemented in this study) would not accurately
delineate the lesion in a number of cases. This may require the operator to further manually
edit and refine the segmentation on multiple slices. This would not only further increase
intra-reader variability, but also be quite cumbersome and increase the processing time,
which would be a further barrier to its adoption in routine clinical practice.
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Figure 2. Example segmentations. T2, ADC maps, and T1CE images in two patients with PCNSL
(A–C) and glioblastoma (D–F) demonstrating MRTA regions of interest (blue outlines). In the
glioblastoma patient, the segmentation, excluding necrosis, is additionally shown (blue and orange
outlines). ADC = apparent diffusion coefficient; PCNSL = primary central nervous system lymphoma;
MRTA = magnetic resonance texture analysis.

www.texrad.com
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2.3. Texture Analysis (MRTA)

The technique employed in this study follows a previously published method [25,26].
The algorithm commences with a filtration step, which serves to remove image noise. This is
performed for six spatial scale filter (SSF) values, whereby SSF = 0 corresponds to no filtration,
SSF = 2 mm represents a fine texture scale, SSF = 3–5 mm signifies a medium texture scale, and
SSF = 6 mm translates to a coarse texture scale (Figure 3). Following filtration, histogram and
statistical parameters (mean, standard deviation, entropy, mean of positive pixels, skewness,
and kurtosis) are automatically calculated for texture quantification. In cases where multiple
contrast enhancing lesions were sufficiently large (10 × 10 mm2) to meet inclusion criteria,
the ROI was drawn in the largest cross-section of each and the data was analysed as one
combined lesion.
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Figure 3. Example of the MRTA filtration process applied to a T1CE image (A) in a patient with
PCNSL using fine (B), medium (C), and coarse filtration (D).

2.4. Visual Inspection

In addition to the computational analysis, two board certified neuroradiologists (ST,
AAB) reviewed all available T1CE, T2 sequences, and ADC maps, blinded to diagnosis.
For each case, the observers chose between a diagnosis of PCNSL, GBM, or assigned it
to the category “uncertain”. A visual estimate was performed to quantify necrosis as de-
tailed in https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project
(Vasari MR Feature Guide v1.1, first accessed on 15 May 2018).

2.5. Statistical Analysis

All statistical testing was undertaken using SPSS version 25 (IBM, Armonk, NY, USA).
Mann-Whitney U non-parametric testing was performed to compare T1CE, T2, and ADC
map texture features of PCNSL and glioblastoma, with p = <0.05 considered significant. For
each ROI type, a Mann-Whitney U test was used for five different filter sizes (SSF = 2–6) and
for unfiltered images (SSF = 0) to assess the six MRTA parameters. In addition, subgroup
analyses were performed to compare PCNSL and GBM histogram metrics for lesions with
<1/3 necrosis and those with ≥1/3 necrosis. A Holmes correction for multiple statistical
comparisons was applied for each set of analyses. For parameters that demonstrated
a significant difference between the two tumour types, an assessment of the feature’s
ability to discriminate the two lesion types was undertaken using a receiver operating
characteristic (ROC) derived area under the curve (AUC) analysis.

3. Results
3.1. Patient Cohort

A total of 90 patients (n = 48 PCNSL and n = 42 GBM) fulfilled the inclusion criteria.
The demographic results and lesion characteristics for the study population are presented
in Table 1.

https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project
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Table 1. Study population demographics and tumour morphology.

Tumour Type PCNSL GBM Total

Median (range) age in years 65 (20–84) 65 (34–81) 65.5 (20–84)
Gender (male/female) 22/26 24/18 46/44

<1/3 necrosis
T1CE 40 (83%) 6 (14%) 46

T2 36 (90%) 4 (10%) 40
ADC 33 (87%) 5 (13%) 38

≥1/3 necrosis
T1CE 8 (17%) 36 (86%) 44

T2 8 (20%) 32 (80%) 40
ADC 5 (14%) 32 (86%) 37

3.2. Analysis of All Tumours

The results for the T1CE, T2, and ADC segmentations of all tumours (n = 90) are
provided in Table 2.

3.2.1. All Tumours, ROI_T1a and ROI_T1b

For ROI_T1a (PCNSL n = 48 and GBM n = 42), the histogram mean values differed
significantly between PCNSL and GBM for all filter sizes (for SSF 2: U = 590, p = 0.001; SSF 3:
U = 518, p < 0.0001; SSF 4: U = 475, p < 0.0001; SSF 5: U = 445, p < 0.0001; and SSF 6: U = 415,
p < 0.0001). Specifically, ROI_T1a entropy values differed when using the smaller filter
sizes (SSF 2: U = 573, p = 0.0004; and SSF 3: U = 603.5, p = 0.001), and skewness differed
when unfiltered (U = 436, p < 0.0001). However, the maximal sensitivity (64.3%) and speci-
ficity (66.6%) for entropy were limited. For ROI_T1b (PCNSL N = 48 and GBM N = 42),
skewness showed a significant difference between PCNSL and GBM unfiltered (U = 412,
p < 0.0001), and kurtosis reached a significant difference for medium to coarse filter sizes (SSF 4:
U = 516.5, p < 0.0001; SSF 5: U = 445.5, p < 0.0001; and SSF 6: U = 445, p < 0.0001). The largest
ROI_T1b AUC was generated for coarse filtered kurtosis, translating to a sensitivity of 71.4%
and specificity of 77.1% (AUC 0.779).

3.2.2. All Tumours, T2 (ROI_T2)

ROI_T2 (PCNSL n = 44 and GBM n = 36) demonstrated significant texture differences
between PCNSL and GBM for mean histogram values (SSF 2: U = 346, p < 0.0001; SSF 3:
U = 314, p < 0.0001; SSF 4: U = 298, p < 0.0001; SSF 5: U = 280, p < 0.0001; and SSF 6:
U = 286, p < 0.0001) and entropy (SSF 2: U = 475, p = 0.002; SSF 3: U = 466.5, p = 0.002; SSF 4:
U = 438.5, p = 0.001; SSF 5: U = 440.5, p < 0.001; and SSF 6: U = 456.5, p = 0.001) in all
filter sizes, and for MPP (mean of positive pixels) using medium and coarse filter sizes
(SSF 3: U = 463.5, p = 0.001; SSF 4: U = 444, p = 0.001; SSF 5: U = 413, p = 0.0002; and SSF 6:
U = 399; p = 0.0001). The standard deviation and entropy differed for unfiltered images
(SD: U = 414, p = 0.0002; and entropy: U = 372.65, p < 0.0001). Using a coarse filter size
and mean T2 values, a sensitivity of 66.7% and specificity of 81.8% for identifying PCNSL
were observed.

3.2.3. All Tumours, ADC (ROI_ADC)

A significant difference was identified for the mean ADC measurement (PCNSL n = 38
and GBM n = 37. Unfiltered: U = 168, p < 0.0001; SSF 2: U = 329, p < 0.0001; SSF 3: U = 299,
p < 0.0001; SSF 4: U = 276, p < 0.0001; SSF 5: U = 252, p < 0.0001; and SSF 6: U = 230, p < 0.0001),
with PCNSL exhibiting generally lower ADC values than GBM. Additionally, the standard
deviation (unfiltered: U = 263, p < 0.0001; SSF 2: U = 358, p = 0.0003; SSF 3: U = 378, p = 0.001;
SSF 4: U = 371, p = 0.0004; SSF 5: U = 395, p = 0.001; and SSF 6: U = 405, p = 0.002), entropy
(unfiltered: U = 326, p < 0.0001; SSF 2: U = 370.5, p = 0.0004; SSF 3: U = 385, p = 0.001; SSF 4:
U = 396.5, p = 0.001; SSF 5: U = 398, p = 0.001; and SSF 6: U = 401, p = 0.001), and MPP
(unfiltered: U = 168, p < 0.0001; SSF 2: U = 254, p < 0.0001; SSF 3: U = 298, p < 0.0001; SSF 4:
U = 284, p < 0.0001; SSF 5: U = 322, p < 0.0001; and SSF 6: U = 314, p < 0.0001) differed between
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the two tumour types throughout all filter sizes. In addition, for skewness, a significant
difference was evident when using a fine filter size (SSF 2: U = 369, p = 0.0004). The most
distinctive result was shown for unfiltered ADC mean and MPP with a sensitivity of 83.8%
and specificity of 78.9% (AUC 0.88) for identifying PCNSL.

3.3. Subgroup Analysis of Predominantly Solid (<1/3 Necrosis) Tumours

No significant (T1CE, T2, or ADC) differences were identified in the filtered histogram
parameters for predominantly solid tumours (n = 46).

3.4. Subgroup Analysis of Partially Necrotic (≥1/3 Necrosis) Tumours

For the comparison of ≥1/3 necrotic contrast enhancing masses (n = 44), no significant
differences in the T1CE (ROI_T1a and ROI_T1b) texture parameters were identified (PCNSL
n = 8 and GBM n = 36). Table 3 shows the subgroup analysis results for the ROI_T2 (PCNSL
n = 8 and GBM n = 32) and ROI_ADC (PCNSL n = 5 and GBM n = 32) segmentations. A
significant difference was demonstrated for the ROI_T2 histogram mean values in medium
to coarse filter sizes (SSF 4: U = 30, p = 0.001; SSF 5: U = 27, p = 0.001; and SSF 6: U = 26,
p = 0.001), which reached a sensitivity of 71.9% and specificity of 87.5%. Using the ROI_ADC
segmentations of partially necrotic tumours, PCNSL exhibited markedly lower MPP values
than GBM, particularly when applying medium to coarse filters (SSF 4: U = 1, p = 0.0004,
SSF 5: U = 7, p = 0.001, and SSF 6: U = 7, p = 0.001). With this, an AUC of 0.994 was observed,
corresponding to a sensitivity of 96.9% and specificity of 100%.

3.5. Visual Rating

Table 4 presents the results of the consensus visual rating, which was generated
through whole brain review using the combination of T1CE, T2, and ADC sequences
available. Three tumours remained unrated due to observer uncertainty. For the remaining
87 tumours, the visual assessment produced a sensitivity of 97.82% and specificity of
92.68% for identifying PCNSL, with a positive predictive value (PPV) of 93.75% and
negative predictive value (NPV) of 97.44%. If the unrated tumours were classed as incorrect
diagnoses, the visual ratings translated to a sensitivity of 93.75% and a specificity of 90.48%,
with a PPV of 91.84% and an NPV of 92.68% for recognising PCNSL.
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Table 2. MRTA analysis of all tumours (PCNSL n = 48 and GBM = 42).

ROI_T1a SSF Mean SD Entropy MPP Skewness Kurtosis Sens/Spec
(%) ROI_T1b SSF Mean SD Entropy MPP Skewness Kurtosis Sens/Spec

(%)

0 NS NS NS NS 0.784 NS 28.6/39.6 0 NS NS NS NS 0.796 NS 64.3/81.2
2 0.293 NS 0.716 NS NS NS 64.3/66.6 2 NS NS NS NS NS NS NS
3 0.257 NS 0.701 NS NS NS 61.9/64.6 3 NS NS NS NS NS NS NS
4 0.236 NS NS NS NS NS 26.2/31.2 4 NS NS NS NS NS 0.744 69/68.7
5 0.221 NS NS NS NS NS 33.3/27.1 5 NS NS NS NS NS 0.779 71.4/77.1
6 0.206 NS NS NS NS NS 23.8/29.2 6 NS NS NS NS NS 0.779 64.3/77.1

ROI_T2 SSF Mean SD Entropy MPP Skewness Kurtosis Sens/Spec
(%) ROI_ADC SSF Mean SD Entropy MPP Skewness Kurtosis Sens/Spec

(%)
0 NS 0.739 0.765 NS NS NS 63.9/68.2 0 0.881 0.813 0.768 0.881 NS NS 83.8/78.9
2 0.782 NS 0.7 NS NS NS 63.9/79.5 2 0.766 0.745 0.736 0.819 0.738 NS 70.3/71.1
3 0.802 NS 0.705 0.71 NS NS 66.7/79.5 3 0.787 0.731 0.726 0.788 NS NS 64.9/71.1
4 0.812 NS 0.723 0.72 NS NS 69.4/79.5 4 0.804 0.736 0.718 0.798 NS NS 73/76.3
5 0.823 NS 0.722 0.74 NS NS 66.7/81.8 5 0.821 0.719 0.717 0.771 NS NS 70.3/73.7
6 0.819 NS 0.712 0.75 NS NS 66.7/81.8 6 0.836 0.712 0.714 0.777 NS NS 70.3/73.7

Bold values represent the histogram feature with the highest area under the curve (AUC) for each filter value, with sensitivity and specificity at the optimal cut-off relating to this feature included.
MRTA = magnetic resonance texture analysis; PCNSL= primary central nervous system lymphoma; GBM = glioblastoma; SSF = spatial scale filter; SD = standard deviation; NS = non-significant; MMP = mean of
positive pixels; ROI_T1a = region of interest for contrast enhanced T1 weighted image including necrotic regions; ROI_T1b = region of interest for contrast enhanced T1 weighed image with necrotic regions
excluded; ROI_T2 = region of interest for T2 weighted image; ROI_ADC = region of interest for apparent diffusion coefficient map.

Table 3. MRTA analysis of partially necrotic (≥1/3 necrosis) tumours (PCNSL n = 8, GBM = 36).

ROI_T2 SSF Mean SD Entropy MPP Skewness Kurtosis Sens/Spec
(%) ROI_ADC SSF Mean SD Entropy MPP Skewness Kurtosis Sens/Spec

(%)

0 NA NA NA NA NA NA NA 0 NA NA NA NA NA NA NA
2 NA NA NA NA NA NA NA 2 NA NA NA NA NA NA NA
3 NA NA NA NA NA NA NA 3 NA NA NA NA NA NA NA
4 0.883 NA NA NA NA NA 62.5/87.5 4 NA 0.956 NA 0.99 NA NA 96.9/100
5 0.895 NA NA NA NA NA 71.9/87.5 5 NA NA NA 0.96 NA NA 78.1/100
6 0.898 NA NA NA NA NA 71.9/87.5 6 NA NA NA 0.96 NA NA 78.1/100

Bold values represent the histogram feature with the highest area under the curve (AUC) for each filter value, with sensitivity and specificity at the optimal cut-off relating to this feature included. MRTA =
Magnetic resonance texture analysis; PCNSL = primary central nervous system lymphoma; GBM = glioblastoma; SSF = spatial scale filter; SD = standard deviation; NS = non-significant; MMP = mean of positive
pixels. ROI_T2 = region of interest for T2 weighted image; ROI_ADC = region of interest for apparent diffusion coefficient map.
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Table 4. Neuroradiologist whole brain visual assessment using T1CE images, T2 images, and ADC maps.

Tissue Diagnosis

PCNSL Glioblastoma

Rater diagnosis
PCNSL 45 3

Glioblastoma 1 38
Unrated 2 1

T1CE = contrast enhanced T1 weighted image; ADC = Apparent diffusion coefficient; PCNSL = primary central
nervous system lymphoma.

4. Discussion

This study investigated the performance of a workstation-based tool for the rapid
distinction of untreated PCNSL and GBM by free-hand segmentation of the largest tumour
cross-section. Image texture differences between tumour types were apparent for T1CE
and T2 imaging, but particularly for diffusion-weighted sequences (ADC maps).

If using the T1CE sequence alone, a moderately accurate (AUC 0.78) identification of
PCNSL was achieved by confining regions of interest to solid enhancing tumour components.
For the ROI_T1b method, kurtosis represented the most distinctive T1CE texture parameter,
which can be explained through microscopic differences in tissue heterogeneity, as was
previously observed for glioma genotyping using TexRad [27]. Kunimatsu et al. [28] recently
demonstrated differences between PCNSL and GBM through the testing of 67 T1CE texture
features in first and second statistical order modelling. Similar to our findings, heterogeneity
parameters, such as entropy, permitted the correct diagnosis. Xiao et al. [29] recently applied
MRTA to T1CE scans in PCNSL (n = 22) and GBM (n = 60), using a manually drawn whole
lesion segmentation of lesions, unselected for the presence or absence of necrosis. Their group
identified first order skewness as the best predictor of tumour type (AUC = 0.86), which is
further indicative of differences in tumour heterogeneity.

In addition, our study shows an influence of the segmentation technique and lesion
necrosis patterns on the discrimination of both tumour types. When analysing predomi-
nantly solid (<1/3 necrosis) masses alone, a T1CE based distinction was not achieved in
our study, which could relate to the small subgroup numbers (n = 5 solid GBM) or the fact
that we tested the performance of each image sequence as a standalone. Suh et al. [19]
recently compared radiomic metrics combining T1CE, T2, and FLAIR images, and reported
an accurate distinction (AUC 0.921) of solid PCNSL from GBM using a machine learning
approach with a computational input of >6000 features. While this result is promising, a
recent meta-analysis once more highlighted that machine learning algorithms for PCNSL
versus GBM distinction tend to experience model overfitting, with reduced performance in
subsequent testing [30].

It should be noted that published results for a radiomics-based distinction of PCNSL
and GBM showed considerable variation, likely influenced by sequence choice and analysis
methods. In their recent comparative study, Bathla et al. reported the highest accuracy
for a combined use (AUC > 0.9) of ADC and T1CE, with or without FLAIR [31]. We note
that this improved result was based on more complex machine learning models, which
could impede rapid clinical translation when compared to the more intuitive, filtration-
histogram-based texture analysis (via a workstation software such as TexRAD) employed
in our study.

Early glioblastoma often shows solid or even minimal enhancement [32], which
may correspond to greater tissue homogeneity at that time point. As such, the T1CE
distinction between the two tumour entities could potentially be more challenging for early
glioblastoma stages. Moreover, no significant T1CE texture differences were demonstrated
between partially necrotic PCNSL and glioblastoma in our study, a question that, to the
best of our knowledge, has not previously been investigated.

Across all (n = 90) tumours included in our research, ADC predicted the presence
of PCNSL with the highest accuracy (AUC 0.88). This result is consistent with previous
literature, with several studies reporting significantly lower ADC mean [17,33] and ADC
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minimum [15] values in PCNSL than glioblastoma. Using an ROI technique confined to
solid tumour components, Wen et al. [15] previously observed differences between PCNSL
and GBM in minimum ADC values (n = 39 PSCNL and n = 35 GBM), reporting a sensitivity
of 74.5% and specificity of 74.1%. In a recent study by Bao et al., ADC histogram parameters
showed no statistically significant difference, possibly due to patient numbers (n = 9 PCNSL
versus 11 GBM) [34]. This difference in results could be due to patient numbers and/or
method differences such as, for example, segmentation technique.

Our results furthermore suggest that ADC texture may facilitate the identification
of necrotic PCNSL (AUC 0.994). The latter result could be explained by greater necrosis
percentage or by differences in tissue architecture (e.g., cellularity), which may give rise to
comparatively higher ADC values in GBM. To the best of our knowledge, we present the
first study to specifically evaluate MRTA features in partially necrotic PCNSL; however, we
did not further quantify necrosis (e.g., as a percentage) due to the small subgroup numbers.
Similarly, the lack of a difference in the ADC texture between predominantly solid PCNSL
and GBM may reflect the limited number of non-necrotic GBM recruited randomly (to
avoid selection bias) in our study. The quantitative nature of an ADC map is advantageous
for reproducibility, but further research will be required regarding the interpretation
of this parameter with respect to tumour necrosis. In our research, the precision of a
neuroradiologist visual inspection outperformed the MRTA software, provided that the
experienced raters were permitted a review of the whole brain on multiple sequences.

This study has a number of limitations. The binary distinction of PCNSL from GBM
served the purpose of trialing the accuracy of MRTA, but, in reality, more diverse differ-
entials may apply in certain clinical situations or with atypical lesion morphology. We
have not tested the reproducibility of segmentations for individual observers or time
points, and further study will be necessary to reproduce the findings for a test population,
ideally with a view to external validation. TexRAD software does not currently offer a
dedicated (semi)automated segmentation function suitable for contouring brain lesions on
MRI. A recognised limitation of manual tumour segmentation is observer dependence and
time consumption, although good inter-observer concordance was demonstrated in recent
glioma research [27,35]. Future studies should look at implementing better semi-automated
segmentation and registration to minimise intra-reader variability. However, it is likely
that the semi-automated, automated, or 3D segmentation would not accurately delineate
the lesion in a number of cases. This may require the operator to further manually edit and
refine the segmentation on multiple slices. This will not only further increase intra-reader
variability, but also be quite cumbersome and increase the processing time, which will be a
further barrier to its adoption in routine clinical practice.

5. Conclusions

This study identified several filtration-histogram-based texture features, most notably
ADC parameters, which may support the distinction of PCNSL and glioblastoma on
standard MRI sequences. The TexRad method could potentially complement an expert
visual rating and appears clinically feasible as an easily operable, rapid workstation tool.
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