54 research outputs found

    Challenges and Success Factors for Metrics in Large-Scale Agile Development

    Get PDF
    Contemporary organizations widely use agile software development to react to unpredictable changes in their business environment. Due to the success of agile methods in contexts similar to the agile sweet spot, organizations have been applying them on a larger scale. However, maintaining oversight in large-scale agile development remains a problem. Metrics can tackle this problem by increasing transparency, but organizations have struggled with their adoption. Furthermore, extant research on large-scale agile development lacks publications investigating metric challenges and success factors. Against this backdrop, we conducted an expert interview study with 23 experts from 13 organizations. The most mentioned challenges are data collection challenges, lack of metric usefulness, and metric calculation challenges. On the other hand, the most occurring success factors are context-dependent metric adoption, implementing an agile metric management process, and ensuring understanding of the metric purpose

    Mixed Valence Europium Nitridosilicate Eu2SiN3

    Get PDF
    The mixed valence europium nitridosilicate Eu2SiN3 has been synthesized at 900°C in welded tantalum ampules starting from europium and silicon diimide Si(NH)2 in a lithium flux. The structure of the black material has been determined by single-crystal X-ray diffraction analysis (Cmca (no. 64), a=542.3(11) pm, b=1061.0(2) pm, c=1162.9(2) pm, Z=8, 767 independent reflections, 37 parameters, R1=0.017, wR2=0.032). Eu2SiN3 is a chain-type silicate comprising one-dimensional infinite nonbranched zweier chains of corner-sharing SiN4 tetrahedra running parallel [100] with a maximum stretching factor fs=1.0. The compound is isostructural with Ca2PN3 and Rb2TiO3, and it represents the first example of a nonbranched chain silicate in the class of nitridosilicates. There are two crystallographically distinct europium sites (at two different Wyckoff positions 8f) being occupied with Eu2+ and Eu3+, respectively. 151Eu Mössbauer spectroscopy of Eu2SiN3 differentiates unequivocally these two europium atoms and confirms their equiatomic multiplicity, showing static mixed valence with a constant ratio of the Eu2+ and Eu3+ signals over the whole temperature range. The Eu2+ site shows magnetic hyperfine field splitting at 4.2 K. Magnetic susceptibility measurements exhibit Curie-Weiss behavior above 24 K with an effective magnetic moment of 7.5 μB/f.u. and a small contribution of Eu3+, in accordance with Eu2+ and Eu3+ in equiatomic ratio. Ferromagnetic ordering at unusually high temperature is detected at TC=24 K. DFT calculations of Eu2SiN3 reveal a band gap of ∼0.2 eV, which is in agreement with the black color of the compound. Both DFT calculations and lattice energetic calculations (MAPLE) corroborate the assignment of two crystallographically independent Eu sites to Eu2+ and Eu3+

    Toward a Metric Catalog for Large-Scale Agile Development

    Get PDF
    Nowadays, organizations use agile software development to remain competitive in their frequently changing business environment. Inspired by the success of agile methods on a small scale, organizations have started to apply them in larger contexts. However, the limited scalability of agile methods is a problem. Metrics can be a success factor for achieving agility at scale, thus adopting them is promising. Most scaling agile frameworks provide few recommendations regarding metrics. Likewise, research on metrics in large-scale agile development lacks concrete guidance for metrics or their organization-specific adoption. To fill this gap, we propose two artifacts. We present the design of a minimalistic metric management fact sheet (MMFS) for large-scale agile development to support practitioners in using metrics in their organization-specific development environment. Furthermore, the MMFS is the basis for our metric catalog documenting 196 metrics identified in an expert study to provide a comprehensive metric set for scaling agile environments

    Occupant-oriented demand response with multi-zone thermal building control

    Get PDF
    In future energy systems with high shares of renewable energy sources, the electricity demand of buildings has to react to the fluctuating electricity generation in view of stability. As buildings consume one-third of global energy and almost half of this energy accounts for Heating, Ventilation, and Air Conditioning (HVAC) systems, HVAC are suitable for shifting their electricity consumption in time. To this end, intelligent control strategies are necessary as the conventional control of HVAC is not optimized for the actual demand of occupants and the current situation in the electricity grid. In this paper, we present the novel multi-zone controller Price Storage Control (PSC) that not only considers room-individual Occupants’ Thermal Satisfaction (OTS), but also the available energy storage, and energy prices. The main feature of PSC is that it does not need a building model or forecasts of future demands to derive the control actions for multiple rooms in a building. For comparison, we use an ideal, error-free Model Predictive Control (MPC), a heuristic control approach from the literature (PC), and a conventional hysteresis-based two-point control as upper and lower benchmarks. We evaluate the four controllers in a multi-zone environment for heating a building in winter and consider two different scenarios that differ in how much the permitted temperatures vary. In addition, we compare the impact of model parameters with high and low thermal capacitance. The results show that PSC strongly outperforms the conventional control approach and PC in both scenarios and for both parameters concerning the electricity costs and OTS. For high capacitance, it leads to 22 % costs reduction while the ideal MPC achieves cost reductions of more than 39 %. Considering that PSC does not need any building model or forecast, as opposed to MPC, the results support the suitability of our developed control strategy for controlling HVAC systems in future energy systems

    Occupant-Oriented Demand Response with Room-Individual Building Control

    Full text link
    In future energy systems with high shares of renewable energy sources, the electricity demand of buildings has to react to the fluctuating electricity generation in view of stability. As buildings consume one-third of global energy and almost half of this energy accounts for Heating, Ventilation, and Air Conditioning (HVAC) systems, HVAC are suitable for shifting their electricity consumption in time. To this end, intelligent control strategies are necessary as the conventional control of HVAC is not optimized for the actual demand of occupants and the current situation in the electricity grid. In this paper, we present the novel multi-zone controller Price Storage Control (PSC) that not only considers room-individual Occupants' Thermal Satisfaction (OTS), but also the available energy storage, and energy prices. The main feature of PSC is that it does not need a building model or forecasts of future demands to derive the control actions for multiple rooms in a building. For comparison, we use an ideal, error-free Model Predictive Control (MPC), a simplified variant without storage consideration (PC), and a conventional hysteresis-based two-point control. We evaluate the four controllers in a multi-zone environment for heating a building in winter and consider two different scenarios that differ in how much the permitted temperatures vary. In addition, we compare the impact of model parameters with high and low thermal capacitance. The results show that PSC strongly outperforms the conventional control approach in both scenarios and for both parameters. For high capacitance, it leads to 22 % costs reduction while the ideal MPC achieves cost reductions of more than 39 %. Considering that PSC does not need any building model or forecast, as opposed to MPC, the results support the suitability of our developed control strategy for controlling HVAC systems in future energy systems.Comment: Paper revisio

    Under-ice phytoplankton blooms: Shedding light on the “invisible” part of Arctic primary production

    Get PDF
    The growth of phytoplankton at high latitudes was generally thought to begin in open waters of the marginal ice zone once the highly reflective sea ice retreats in spring, solar elevation increases, and surface waters become stratified by the addition of sea-ice melt water. In fact, virtually all recent large-scale estimates of primary production in the Arctic Ocean (AO) assume that phytoplankton production in the water column under sea ice is negligible. However, over the past two decades, an emerging literature showing significant under-ice phytoplankton production on a pan-Arctic scale has challenged our paradigms of Arctic phytoplankton ecology and phenology. This evidence, which builds on previous, but scarce reports, requires the Arctic scientific community to change its perception of traditional AO phenology and urgently revise it. In particular, it is essential to better comprehend, on small and large scales, the changing and variable icescapes, the under-ice light field and biogeochemical cycles during the transition from sea-ice covered to ice-free Arctic waters. Here, we provide a baseline of our current knowledge of under-ice blooms (UIBs), by defining their ecology and their environmental setting, but also their regional peculiarities (in terms of occurrence, magnitude, and assemblages), which is shaped by a complex AO. To this end, a multidisciplinary approach, i.e., combining expeditions and modern autonomous technologies, satellite, and modeling analyses, has been used to provide an overview of this pan-Arctic phenological feature, which will become increasingly important in future marine Arctic biogeochemical cycles

    MOSAiC goes O2A - Arctic Expedition Data Flow from Observations to Archives

    Get PDF
    During the largest polar expedition in history starting in September 2019, the German research icebreaker Polarstern spends a whole year drifting with the ice through the Arctic Ocean. The MOSAiC expedition takes the closest look ever at the Arctic even throughout the polar winter to gain fundamental insights and most unique on-site data for a better understanding of global climate change. Hundreds of researchers from 20 countries are involved. Scientists will use the in situ gathered data instantaneously in near-real time modus as well as long afterwards all around the globe taking climate research to a completely new level. Hence, proper data management, sampling strategies beforehand, and monitoring actual data flow as well as processing, analysis and sharing of data during and long after the MOSAiC expedition are the most essential tools for scientific gain and progress. To prepare for that challenge we adapted and integrated the research data management framework O2A “Data flow from Observations to Archives” to the needs of the MOSAiC expedition on board Polarstern as well as on land for data storage and access at the Alfred Wegener Institute Computing and Data Center in Bremerhaven, Germany. Our O2A-framework assembles a modular research infrastructure comprising a collection of tools and services. These components allow researchers to register all necessary sensor metadata beforehand linked to automatized data ingestion and to ensure and monitor data flow as well as to process, analyze, and publish data to turn the most valuable and uniquely gained arctic data into scientific outcomes. The framework further allows for the integration of data obtained with discrete sampling devices into the data flow. These requirements have led us to adapt the generic and cost-effective framework O2A to enable, control, and access the flow of sensor observations to archives in a cloud-like infrastructure on board Polarstern and later on to land based repositories for international availability. Major roadblocks of the MOSAiC-O2A data flow framework are (i) the increasing number and complexity of research platforms, devices, and sensors, (ii) the heterogeneous interdisciplinary driven requirements towards, e. g., satellite data, sensor monitoring, in situ sample collection, quality assessment and control, processing, analysis and visualization, and (iii) the demand for near real time analyses on board as well as on land with limited satellite bandwidth. The key modules of O2A's digital research infrastructure established by AWI are implementing the FAIR principles: SENSORWeb, to register sensor applications and sampling devices and capture controlled meta data before and alongside any measurements in the field Data ingest, allowing researchers to feed data into storage systems and processing pipelines in a prepared and documented way, at best in controlled near real-time data streams Dashboards allowing researchers to find and access data and share and collaborate among partners Workspace enabling researchers to access and use data with research software utilizing a cloud-based virtualized infrastructure that allows researchers to analyze massive amounts of data on the spot Archiving and publishing data via repositories and Digital Object Identifiers (DOI

    New Ln-N-coordination polymers and MOFs as hybrid materials for effective luminescence and new phosphors

    No full text
    In der vorliegenden Arbeit wird die Darstellung und Charakterisierung von Komplexen, Koordinationspolymeren und MOFs auf der Basis von dreiwertigen Lanthanidchloriden und verschiedenen verbrückenden Azin- und Diazin-Liganden beschrieben. Ziel war es neuartige Koordinationspolymere mit effektiven Photolumineszenzeigenschaften zu generieren. Es konnten 44 neue organisch-anorganische Hybridmaterialien präsentiert werden. Der Fokus der Arbeit lag neben der strukturellen Charakterisierung auf der Bestimmung der Photolumineszenzeigenschaften und der Betrachtung der thermischen Eigenschaften der Verbindungen. Bei solvothermalen Reaktionen von wasserfreien Lanthanidchloriden mit den Liganden 4,4‘-Bipyridin (bipy) und Pyridin (py) konnten die dinuklearen Komplexe [Ln2Cl6(bipy)(py)6] mit Ln = Y, Pr, Nd, Sm-Yb, die strangartigen Koordinationspolymere 1∞[LnCl3(bipy)(py)2]·(py) mit Ln = Gd-Er, Yb und 1∞[Lu2Cl5(bipy)2 (py)4]1∞[LuCl4(bipy)], sowie das 2D-Netzwerk 2∞[Ce2Cl6(bipy)4]·(py) synthetisiert und mithilfe der Röntgeneinkristallstrukturanalyse charakterisiert werden. Spektroskopische Untersuchungen an den Verbindungen ergaben außergewöhnliche Photolumineszenzeigenschaften auf der Basis von Ln3+-Ionen mit Emissionen im UV-VIS und NIR-Bereich. Im Falle des dinuklearen Komplexes konnten mithilfe der Ionen Y3+, Gd3+, Tb3+ und Eu3+ Lichtemission in den RGB-Grundfarben generiert werden. Der Einfluss salzsaurer Bedingungen führt zur Bildung der pyridiniumhaltigen Nebenphasen [Hpy]1∞[LnCl4(bipy)] mit Ln = Y, Tb), Yb, Lu, [Hpy]22∞[Sm2Cl8(bipy)3]·2(py) und [Hdpa] [EuCl4(dpa)]. Unter der Verwendung einer Schmelzsyntheseroute wurden die Verbindungen 3∞[La2Cl6(bipy)5] ·4(bipy) 2∞[Ln2Cl6(bipy)3]·2(bipy) mit Ln = Nd, Sm-Dy, Er, Yb und eine Dotierreihe mit Ln = Gd2-x-yEuxTy (x,y = 0-1), welche vor einigen Jahren im Arbeitskreis von Prof. Müller-Buschbaum et al. entdeckt wurden, dargestellt. Der Fokus der Arbeit lag hierbei auf der Bestimmung der Photolumineszenzeigenschaften der Netzwerke, wobei vor allem bei der Dotierreihe unter der Verwendung von Ln3+-zentrierter Emission ein stufenloses Farbtuning der Emissionsfarbe von grün nach rot erreicht werden konnte. Zusätzlich wurden an diesen Verbindungen systematische Untersuchungen zur strukturellen Aufklärung, der bei höheren Temperaturen entstehenden Netzwerk- und Gerüstverbindungen, durchgeführt. Hierbei konnten Kondensationsprodukte wie 3∞[LaCl3(bipy)], 2∞[Ln3Cl9(bipy)3] mit Ln = Pr, Sm, 2∞[Ho2Cl6(bipy)2] und 2∞[Gd2Cl6(qtpy)(bpy)]·(bipy) strukturell aufgeklärt werden. Die Übertragung der solvothermalen Syntheseroute unter der Verwendung von Pyridin auf die gegenüber bipy verlängerten Azin-Liganden Dipyridylethen (dpe) bzw. –ethan (dpa) erwies sich als erfolgreich und resultierte in eine Erweiterung der Strukturchemie durch die Darstellung der lumineszierenden Koordinations-polymere 2∞[La2Cl6(dpe)3(py)2]·(dpe), 1∞[LnCl3(dpe)(py)2]·0.5(dpe)0.5(py) mit Ln = Eu, Gd, Er, 2∞[LaCl3(dpa)2]·(dpa) und 1∞[LnCl3(dpa)(py)2]·0.5(dpa)0.5(py) mit Ln = Gd, Er. Eine Verkürzung des bipy-Liganden in Form der Di-Azinen wie Pyrazin (pyz), Pyrimidin (pym) und Pyridazin (pyd) und deren Umsetzung mit LnCl3 führte zur Bildung von Komplexen und polymeren Strukturen wie 3∞[LaCl3(pyz)], [Ln2Cl6(pyz)(py)6]·2(pyz) mit Ln = Sm, Er, 1∞[Sm2Cl6(μ-pym)2(pym)3]·(pym), [Er2Cl6(pym)6] und [ErCl3(η-pyd)(pyd)2] mit Lumineszenzeigenschaften auf der Basis der jeweiligen Liganden und Ln3+-Ionen.The present work is about the synthesis and characterization of complexes, coordination polymers and MOFs based on trivalent lanthanidechlorides and different bridging azine and diazine ligands. The creation of new coordination polymers with effective photoluminescent properties was a main goal of this thesis. Therefore, 44 new organic-inorganic hybrid-materials are presented in this work. Main focus of investigation was on structural characterization and determination of photoluminescence and thermal properties of the synthesized compounds. Solvothermal reactions of anhydrous lanthanidechlorides with the ligand 4,4‘-bipyridine (bipy) and pyridine (py) lead to dinuclear complexes [Ln2Cl6(bipy)(py)6] with Ln = Y, Pr, Nd, Sm-Yb, strand-like coordination polymers 1∞[LnCl3(bipy)(py)2]·(py) with Ln = Gd-Er, Yb and 1∞[Lu2Cl5(bipy)2(py)4]1∞[LuCl4(bipy)] and also 2D-networks like 2∞[Ce2Cl6(bipy)4]·(py) could be obtained and characterized by single-crystal-X-ray-stucture-determination. Spectroscopic investigations revealed extraordinary photoluminescence properties based on Ln3+-ions with light emission in the UV-VIS and NIR range. Especially the dinuclear complexes containing Y3+, Gd3+, Eu3+ and Tb3+ ions showed the RGB basic colors, allowing color tuning in the visible range. The influence of hydrochloric conditions lead to the formation of the pyridinium containing side phases [Hpy]1∞[LnCl4(bipy)] with Ln = Y, Tb, Yb, Lu, [Hpy]22∞[Sm2Cl8(bipy)3]·2(py) and [Hdpa]1∞[EuCl4(dpa)]. Furthermore, the compounds 3∞[La2Cl6(bipy)5]·4(bipy), 2∞[Ln2Cl6(bipy)3]·2(bipy) with Ln = Nd, Sm-Dy, Er, Yb and a solid solution with Ln = Gd2-x-yEuxTy (x,y = 0-1), which were discovered in the research group of Prof. Müller-Buschbaum et al., were synthesized by using a melt-synthesis route. Hereby, the emphasis was on the investigation of photoluminescence properties of the networks, most notably the color tuning properties based on Ln3+centered emission of the solid solution in the color range from green to red. Additionally, systematic investigations were performed on the networks for the determination of high-temperature dependent structural changes, leading to the structural characterization of the structural condensation products 3∞[LaCl3(bipy)], 2∞[Ln3Cl9(bipy)3] with Ln = Pr, Sm, 2∞[Ho2Cl6(bipy)2] and 2∞[Gd2Cl6(qtpy)(bipy)]·(bipy). The transfer of the solvothermal reaction route with the use of pyridine as solvent on the ligands dipyridylethene (dpe) and -ethane (dpa) was successful, also leading to luminescent coordination polymers in 2∞[La2Cl6(dpe)3(py)2]·(dpe), 1∞[LnCl3(dpe)(py)2]·0.5(dpe)0.5(py) wih Ln = Eu, Gd, Er, 2∞[LaCl3(dpa)2]·(dpa) and 1∞[LnCl3(dpa)(py)2]·0.5(dpa)0.5(py) with Ln = Gd, Er. The shortening of the bipy ligand by using diazines, like pyrazine (pyz), pyrimidine (pym) and pyridazine (pyd) as connector ligands, resulted in the extension of coordination compounds based on LnCl3 and diazine building blocks. Therefore, complexes and coordination polymers like 3∞[LaCl3(pyz)], [Ln2Cl6(pyz)(py)6]·2(pyz) with Ln = Sm, Er, 1∞[Sm2Cl6(μ-pym)2(pym)3]·(pym), [Er2Cl6(pym)6] and [ErCl3(η-pyd)(pyd)2] were discovered and characterized. Furthermore, first basic luminescence properties of the used ligands and their interaction with Ln3+-ions were investigated

    Investigating the Adoption of Metrics in Large-Scale Agile Software Development

    No full text
    Many organizations have started using agile methods to develop software in small projects. The success of agile methods on a small scale inspired organizations to scale them to larger contexts. However, adopting agile practices at scale can complicate the monitoring, coordination, and steering of the multi-layered development process. Metrics can address this challenge but are controversial since their implementation is a challenge in itself. Hitherto, research on large-scale agile development lacks publications investigating the adoption of metrics. We conducted an expert interview study to explore their (i) reasons for adopting metrics (ii), what metrics they use on the team, program, and portfolio level (iii), and the most occurring metrics in the expert organizations. Our results show that metrics are mainly used for transparency, improvement, and controlling. Most metrics occur on the program level. Finally, we identified story point estimation, velocity, and sprint burn-down, as the most established metrics
    corecore