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A B S T R A C T

In future energy systems with high shares of renewable energy sources, the electricity demand of buildings has
to react to the fluctuating electricity generation in view of stability. As buildings consume one-third of global
energy and almost half of this energy accounts for Heating, Ventilation, and Air Conditioning (HVAC) systems,
HVAC are suitable for shifting their electricity consumption in time. To this end, intelligent control strategies
are necessary as the conventional control of HVAC is not optimized for the actual demand of occupants and the
current situation in the electricity grid. In this paper, we present the novel multi-zone controller Price Storage
Control (PSC) that not only considers room-individual Occupants’ Thermal Satisfaction (OTS), but also the
available energy storage, and energy prices. The main feature of PSC is that it does not need a building model
or forecasts of future demands to derive the control actions for multiple rooms in a building. For comparison,
we use an ideal, error-free Model Predictive Control (MPC), a heuristic control approach from the literature
(PC), and a conventional hysteresis-based two-point control as upper and lower benchmarks. We evaluate
the four controllers in a multi-zone environment for heating a building in winter and consider two different
scenarios that differ in how much the permitted temperatures vary. In addition, we compare the impact of
model parameters with high and low thermal capacitance. The results show that PSC strongly outperforms the
conventional control approach and PC in both scenarios and for both parameters concerning the electricity costs
and OTS. For high capacitance, it leads to 22% costs reduction while the ideal MPC achieves cost reductions
of more than 39%. Considering that PSC does not need any building model or forecast, as opposed to MPC,
the results support the suitability of our developed control strategy for controlling HVAC systems in future
energy systems.
1. Introduction

Buildings consume one-third of global final energy [1] and produce
27% of total energy sector emissions. Almost half of the energy is used
by Heating, Ventilation, and Air Conditioning (HVAC) systems to heat
or cool buildings [2]. The energy consumption in buildings results
from Occupant Behavior (OB) and Occupants’ Thermal Satisfaction
(OTS) as they interact with the building’s energy systems and require
comfortable thermal conditions [3]. To reduce emissions, renewable
energies can cover the energy demand of buildings [4]. As renewable
energy sources are characterized by volatile energy generation, the
buildings’ electricity consumption could match this volatility.

Flexible electrical loads are pivotal for future energy systems in view
of stability to cope with the increasing share of intermittent renewable
energy sources like solar and wind energy. For exploiting flexible
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electric loads in buildings, the HVAC operation can be integrated into
Demand Response (DR) programs. DR refers to the change of electricity
demand in response to internal or external factors like the price of
electricity [5]. In the building sector, electrical HVAC systems, like heat
pumps or air conditioners, are suitable for DR. They can exploit existing
infrastructure like the building mass or hot water tanks to shift their
electricity demand in time [6]. Thus, they can significantly contribute
to better utilization of renewable energy sources and simultaneously
help to stabilize the electricity grid. In order to use HVAC systems for
DR, optimized control strategies are necessary.

In addition to DR, designing the HVAC operation tailored to the
actual occupants’ needs could significantly reduce energy use. For
example, the average occupancy rates of offices are rarely over 60%
[7]. However, the HVAC control in offices usually does not consider
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Nomenclature

Acronyms

DR Demand Response
HVAC Heating, Ventilation, and Air Conditioning
KPIs Key Performance Indicators
MPC Model Predictive Control
OB Occupant Behavior
OTS Occupants’ Thermal Satisfaction
PC Price Control
PI Proportional Integral
PMV Predicted Mean Vote
PPD Predicted Percentage of Dissatisfied
PSC Price Storage Control
PV Photovoltaic
RBC Rule-based Control
RC Resistor Capacitor

Parameters

𝛥𝑡𝑘 time step in s
𝐶i𝑗 heat capacity of room air in J K−1

𝐶m𝑗
heat capacity of heat accumulating medium
in J K−1

𝑔s𝑗 solar heat gain factor in m2

𝑛 number of rooms 𝑗
𝑅a𝑗 resistance between 𝑇i𝑗 and 𝑇a in KW−1

𝑅i𝑗 resistance between 𝑇i𝑗 and 𝑇m𝑗
in KW−1

𝑇lb𝑗 minimal comfort temperature in °C
𝑇r𝑗 reference comfort temperature in °C
𝑇ub𝑗 maximal comfort temperature in °C

Variables

𝜒dis discomfort factor
𝜒mod heat pump modulation degree
𝜒p price factor
𝜒s𝑗 storage factor
�̇� heat flow in W
�̇�h𝑗 heat flow of heat pump in W
�̇�s solar radiation in Wm−2

𝜀h coefficient of performance of heat pump
𝐹 empirical distribution function
𝐼 electric current in A
𝑝tv time-variable parameter
𝑃buy bought electrical power in W
𝑃el electrical power of heat pump in W
𝑃max max. electrical power of heat pump in W
𝑆𝑗 state of thermal charge
𝑇 temperature in °C
𝑡 time in s
𝑇a ambient temperature in °C
𝑇i𝑗 room air temperature in °C
𝑇m𝑗

heat accumulating medium temperature in
°C

𝑈 electric voltage in V
𝑢 control input
𝑥 state
𝑦 control output
2

the actual occupancy of the individual rooms. This leads to unneces-
sary energy use in unoccupied periods. 56% of the energy consumed
y buildings is used during unoccupied hours and 44% in occupied

hours [8]. To consider occupancy room-individually, multi-zone control
strategies are required.

For the optimization of HVAC to consider DR and individual OTS,
advanced control strategies are required instead of standard ther-
mostats [9], for example, Model Predictive Control (MPC) [10] or
heuristic control strategies [11]. MPC finds the optimal input trajectory
for the HVAC system’s control outputs over a future time horizon
by solving an optimization problem under consideration of system
dynamics, forecasts, and constraints. Therefore, it requires a dynamic
thermal building model and forecasts of OB and weather [12]. The
development of models and forecasts can make MPC less practicable
and more expensive for real-world applications [10].

In contrast, heuristic control strategies are model- and forecast-free
heuristic algorithms. They iteratively adjust the power consumption of
HVAC systems in order to archive certain goals. In order to do this, they
use rule-based control mechanisms and heuristic algorithms that can
adapt the HVAC system’s heat flows to internal and external signals.
Their core advantage is that they do not require a building model to
solve an optimization problem [11]. Thus, they apply to any building
without significant adjustments.

1.1. Related work

A variety of different control strategies for HVAC and evaluation
methods are available in the literature. We compare the most relevant
studies for the present paper in Table 1, focusing on multi-zone control
with heuristics algorithms and MPC.

In all evaluated studies, the objective is to reduce energy costs
while satisfying OTS. As a result, most authors compare the energy
costs and thermal comfort as Key Performance Indicators (KPIs) for
the controllers. However, the performance results not only from the
controller itself but also from the evaluation environment. Overall, the
performance of controllers depends on three major variables:

• controller: the logic of the controller and the information it
processes in its decision-making process,

• data: the data and scenarios used for evaluation, including
weather, price, and occupancy data,

• parameters: the model parameters of the evaluation environ-
ment, such as thermal capacitance.

The three most significant differences between controllers are (i)
whether they require a model, (ii) forecasts, and (iii) if they can control
multiple zones. Regarding the controller evaluation, we investigate if
upper and lower benchmarks as well as different scenarios and different
parameters were used for evaluation.

Most studies in the literature use model-based approaches, such as
MPC, as they can find the optimal solution of an optimization prob-
lem [6]. MPC has gained significant importance for building control in
the context of DR. Most authors use MPC for controlling HVAC systems,
e.g. Maddalena et al. [14], Hu et al. [15], Pedersen et al. [16], Blum
et al. [17], Mork et al. [20], Frahm et al. [12], Zwickel et al. [13],
Biyik et al. [22], and Freund et al. [24]. While model-based approaches
generally yield adequate results, they can suffer from execution times
and require modeling the thermal behavior of a building, which is the
most complex task [10].

Fewer studies use model-free control strategies. Compared to model-
based strategies, the controller design process is significantly simplified,
as no building-specific model is required. Model-free control algorithms
can be found in the studies of Dengiz et al. [11], Rodriguez et al. [18],
Nolting et al. [19], and Michailidis et al. [21], Peng et al. [23], and
Korkas et al. [25]. These approaches are rule-based control mechanisms
that, in a few cases, are also combined with a heuristic approach for

optimizing an objective function.
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Table 1
Comparison of relevant papers studying approaches for demand response of HVAC systems.

Literature Model-free
control

Forecast-free
control

Multi-zone
control

Comparison with
lower
benchmark

Comparison with
upper
benchmark

Evaluation with
different
scenarios and
parameters

Dengiz et al. 2019 [11] ✓ ✓ ✗ ✓ ✓ ✗

Frahm et al. 2022 [12] ✗ ✗ ✗ ✓ ✗ ✗

Zwickel et al. 2022 [13] ✗ ✗ ✓ ✗ ✓ ✗

Maddalena et al. 2022 [14] ✗ ✗ ✓ ✓ ✓ ✓

Hu et al. 2014 [15] ✗ ✗ ✓ ✓ ✓ ✓

Pedersen et al. 2018 [16] ✗ ✗ ✗ ✓ ✓ ✗

Blum et al. 2016 [17] ✗ ✗ ✓ ✗ ✓ ✓

Rodríguez et al. 2018 [18] ✓ ✓ ✓ ✓ ✗ ✗

Nolting et al. 2019 [19] ✓ ✓ ✗ ✓ ✗ ✗

Mork et al. 2022 [20] ✗ ✗ ✓ ✓ ✓ ✗

Michailidis et al. 2018 [21] ✓ ✗ ✓ ✓ ✗ ✗

Biyik et al. 2019 [22] ✗ ✗ ✓ ✓ ✗ ✗

Peng et al. 2019 [23] ✓ ✗ ✓ ✓ ✗ ✗

Freund et al. 2021 [24] ✗ ✗ ✓ ✓ ✗ ✓

Korkas et al. 2016 [25] ✓ ✗ ✓ ✗ ✓ ✓

Present work ✓ ✓ ✓ ✓ ✓ ✓
Another essential requirement for most of the optimized control
pproaches is the availability of forecasts. Some of the model-free
pproaches do not rely on any forecast, such as Dengiz et al. [11],
odriguez et al. [18], or Notling et al. [19].

Our literature review emphasizes the use of control algorithms for
ultiple zones (see Table 1). There are also control approaches in the

iterature that consider only buildings with one thermal zone. However,
his would assume a uniform temperature in the whole building. As a
esult, the consideration of multiple zones is closer to the real thermal
ehavior of buildings. On the one hand, multi-zone control increases
he complexity of the control problem. On the other hand, a controller
hat is designed for multiple rooms can consider room individual OTS
nd OB. In addition, multi-zone control strategies for multiple rooms
an often be extended to multiple buildings. For example, Korkas
t al. [25] demonstrate the control of three different buildings, where
ach building has ten zones.

When evaluating the performance of the developed control ap-
roach, most studies use a conventional baseline control approach, like
imple rule-based control, hysteresis-based two-point controller, or a
roportional Integral (PI) controller as a lower benchmark. Rarely, a
euristic controller is compared to a lower benchmark (baseline con-
roller) and also an upper benchmark (optimal-based controller). Such
n elaborated evaluation can be found in Hu et al. [15] who compare a
euristic, baseline, and MPC controller, and also two variants of each.

To find out whether control strategies are also suitable for various
onditions, it is required to compare different scenarios, data sets,
nd parameters in the evaluation environment. Over several months,
reund et al. [24] compared three different building sections, with
ifferent controllers and up to seven rooms in each section. Korkas
t al. [25] evaluated Rule-based Control (RBC) and an optimization-
ased strategy in three different buildings with individual occupancy
chedules. Hu et al. [15] demonstrated the impact of different thermal
arameters and varying window operation schedules on the control
erformance. Changes in weather conditions and their impact on the
ontrollers (MPC and PI) can be found in Maddalena et al. [14]. Blum
t al. [17] showed the impact of the thermal mass on DR provision with
ptimization-based strategies.

In summary, the literature review shows a demand for multi-zone
ontrol to consider occupant-oriented DR room-individually. To address
ccupant-oriented DR, most authors apply an optimization-based ap-
roach, such as MPC. However, MPC requires a thermal building model
nd it is a complex task finding sufficient models for various buildings.
ewer studies use model-free strategies with heuristic approaches. In
ddition, we obtained a research gap for an elaborative evaluation
f multi-zone heuristic control strategies with different scenarios and
arameters as well as upper and lower benchmarks.
3

1.2. Contribution of this paper

The two main contributions of the present paper are (i) the intro-
duction of a novel heuristic multi-zone control approach, called Price
Storage Control (PSC), and (ii) the evaluation in a versatile evaluation
environment with different scenarios, parameters, and data sets.

PSC combines external factors (e.g. electricity price) and internal
factors (temperatures of different zones in the building) to determine
when and how much electricity should be consumed for the generation
of heat flows. The approach is model-free and does not need any
forecasts. To the best of our knowledge, our study is the only one
that introduces a novel control approach for buildings with multiple
zones that does not need any model or forecasts and that allows for
a coordinated coupling of multiple buildings. This is because of its
capability to use any external factor for deriving the HVAC control
output. Our study is the first that evaluates an introduced model-
free and forecast-free control algorithm by using a lower and upper
benchmark that is evaluated with different scenarios and parameters
(see Table 1).

To evaluate the PSC control performance in terms of OTS and
energy costs, we compare four different control strategies in a multi-
zone thermal building model. In the evaluation, we use two different
parameter sets for high and low capacitance and two scenarios with
different degrees of variable room usage. In the base scenario, the
temperature range is scheduled between comfort and standby mode.
The second scenario also allows room-individual temperature ranges,
based on the use case for each room. For comparison, we use an ideal,
error-free MPC, a simplified version of PSC without storage factor,
called Price Control (PC) that is based on an approach from the lit-
erature [11], and a hysteresis-based two-point controller as upper and
lower benchmarks. We publish the four developed controllers and the
evaluation environment as commented Python code in an open-source
repository. This publication enables researchers to (i) directly apply our
developed control strategies in other scenarios and environments, (ii)
test OB models regarding control metrics [26], and (iii) develop new
control strategies on the room-individual level.

1.3. Structure of this paper

We develop and implement four different control strategies and an
evaluation environment in the present work. We present the models in
Section 2, the controllers in Section 3, the evaluation environment in
Section 4, and results and discussion in Section 5. Finally, we conclude
the paper in Section 6.
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2. Models

The modeling section Section 2 is separated into three parts: the
thermal building model in Section 2.1, the heat pump in Section 2.2,
and OTS in Section 2.3. We use the models for the evaluation environ-
ment in Section 4 and for the internal model of MPC (see Section 3.1).

2.1. Multi-zone thermal building model

In this section, we develop a multi-zone thermal building model
to evaluate room-individual control strategies. The model applies the
Resistor Capacitor (RC) analogy to describe the heat flows between
temperature nodes by resistors 𝑅 and thermal dynamics by capacitors

. First, we derive the RC analogy and then apply it to the multi-zone
odel for evaluation and MPC.

erivation of the RC analogy
In general, the RC analogy is used to model thermal behavior in

uildings by simplifying the laws of thermodynamics and heat trans-
er [27]. In analogy to electric networks, the thermal behavior of a
uilding is determined by resistors and capacitors.

Thermal resistors 𝑅 describe possible paths of heat flows and their
ate of transmitted energy. As illustrated in Eq. (1), the temperature 𝑇

is analogous to the voltage 𝑈 and the heat flow �̇� to the electric current
𝐼 .

𝛥𝑈 = 𝑅 ⋅ 𝐼

⇒ 𝛥𝑇 = 𝑅 ⋅ �̇�
(1)

As shown in Eq. (2), thermal capacitors 𝐶 quantify the thermal
capacity of thermal elements. In a building, these elements can be for
example the air, walls, or furniture.

𝐶
d𝑈 (𝑡)
d𝑡

= 𝐼in(𝑡) − 𝐼out (𝑡)

𝐶
d𝑇 (𝑡)
d𝑡

= �̇�in(𝑡) − �̇�out (𝑡)
(2)

Analog to a voltage 𝑈 , the temperature 𝑇 of the capacitor 𝐶
describes the thermal state of the thermal element. To capture the
thermal state of an entire building with a model, the building is
simplified into a discrete number of states. This approach is also called
the lumped capacitance method. The number of states and the model
structure needs to be adequately defined so that the thermal states can
sufficiently describe the heat transfer effects associated with thermal
elements in contact [28].

Multi-zone model for evaluation and MPC
We illustrate our thermal building model structure, obtained from

the literature [29,30], in Fig. 1. In this model, we use two states for
each room 𝑗1, the inside air temperature 𝑇i𝑗 and the thermal mass 𝑇m𝑗

.
These two states are connected with resistors 𝑅, capacitors 𝐶, and heat
flows �̇�.

The two temperature nodes 𝑇i𝑗 and 𝑇m𝑗
are connected by the inside

resistor 𝑅i𝑗 . Furthermore, the inside air temperature node 𝑇i𝑗 is con-
nected to the outside air temperature 𝑇a using the outside resistor 𝑅a𝑗 .
The inside air temperature 𝑇i𝑗 is also effected by heat flows from the
sun �̇�s𝑗 and the heating �̇�h𝑗 . The solar heat flow �̇�s𝑗 results from the
global radiation �̇�s and the solar heat gain coefficient 𝑔s𝑗 .

Based on Fig. 1, each room is mathematically defined by the two
differential equations Eq. (3) and (4). Applying this structure in Fig. 1
to each room 𝑗 (𝑗 = 1… 𝑛) results in a multi-zone model [30] (see Fig. 3
in Section 4).

𝐶i𝑗

d𝑇i𝑗
d𝑡

=
𝑇m𝑗

− 𝑇i𝑗
𝑅i𝑗

+
𝑇a − 𝑇i𝑗
𝑅a𝑗

+ 𝑔s𝑗 �̇�s + �̇�h𝑗 (3)

1 We use the subscript 𝑗 as a room index for 𝑛 rooms: 𝑗 (𝑗 = 1… 𝑛).
4

Fig. 1. Thermal building model for each room 𝑗.

𝐶m𝑗

d𝑇m𝑗

d𝑡
=

𝑇i𝑗 − 𝑇m𝑗

𝑅i𝑗
(4)

Each room needs to be heated by a heat flow �̇�h𝑗 , provided by the
heat pump.
𝑛
∑

𝑗=1
�̇�h𝑗 = �̇�h (5)

The heat pump generates the sum of heat flows �̇�h from electric
power 𝑃el, as described in the following.

2.2. Heat pump model

The heat pump transforms electrical power 𝑃el to a heat flow �̇�h
ith a coefficient of performance 𝜀h.

el =
|

|

�̇�h||
𝜀h

(6)

In this study, a air-sourced heat pump is considered where the
coefficient of performance depends on the temperature of the supplied
air (the ambient temperature) 𝑇a: 𝜀h = 𝜀h(𝑇a).

The heat pump can modulate its power consumption 𝑃el with 𝜒mod
between 20% and 100% (and thus the resulting heat flow �̇�h).

𝑃el = 𝜒mod ⋅ 𝑃max (7)

𝜒mod ∈ {0, [0.2, 1]} (8)

In our model, the entire electrical power 𝑃el needs to be bought from
the grid.

𝑃buy = 𝑃el (9)

2.3. Occupants’ Thermal Satisfaction (OTS) model

In this section, we define the temperature ranges [𝑇lb𝑗 (𝑡), 𝑇ub𝑗 (𝑡)]
based on international standards for Occupants’ Thermal Satisfac-
tion (OTS) modeling. The three most frequently cited OTS standards
are ASHRAE Standard 55 [31], ISO 7730:2005 [32], and EN 16798-
1:2019 [33]. These standards are fundamentally based on the Pre-
dicted Mean Vote (PMV) standard scale, which was first introduced by
Fanger’s model [34].

The PMV is a static model evaluated from a large group of peo-
ple with a given combination of thermal environmental and personal
parameters. These parameters include metabolic activity, clothing, air
temperature, radiant temperature, air velocity, and relative humidity.
In a survey, occupants express their thermal sensations on a scale from
−3 (too cold) to +3 (too warm), where 0 is optimum. Fanger also
developed an equation that relates the PMV to the Predicted Percentage
of Dissatisfied (PPD).

The OTS level can be selected between different PMV boundaries,
e.g. ±0.2 for level I or ±0.7 for level III. The standard OTS guidelines
aim for a PMV from −0.5 to +0.5 (OTS level II, see Table 2). Wider tem-
perature limits result in lower energy consumption of HVAC systems,
while smaller limits reduce the PPD.
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Table 2
OTS categories, obtained from CBE Thermal Comfort Tool [35] with EN-16798 and
winter clothings.

OTS PMV PPD 𝑇lb 𝑇ub
I ±0.2 < 6% 22.6 °C 24.0 °C
II ±0.5 < 10% 21.5 °C 25.0 °C
III ±0.7 < 15% 20.7 °C 25.8 °C
off – – 16.0 °C 30.0 °C

Based on these OTS levels in Table 2, we calculate the corresponding
ower 𝑇lb and upper 𝑇ub temperature limits that are required for the

scenarios in Section 4.2. For the calculation of the temperature limits,
we use the CBE Thermal Comfort Tool [35] with EN-16798 standard
and winter clothing. In this tool, we set the mean radiant temperature
equal to the air temperature 𝑇i. This implies the assumption that
the operative temperature is close to the air temperature. For more
information about the operative temperature, we refer to our previous
work [27]. The resulting temperature limits for different levels of OTS
are presented in Table 2.

3. Control strategies

This section describes the development of four different control
strategies: MPC in Section 3.1, PSC and PC in Section 3.2, and
hysteresis-based two point control in Section 3.3. In general, the four
control strategies apply to heating or cooling.2.

The objective is to minimize the electricity costs given by a time-
ariable electricity price while ensuring the OTS. We develop the
SC as a novel control methodology for occupant-oriented demand-
esponse with multi-zone building control. The MPC and hysteresis-
ased two-point controller are used as upper and lower benchmarks,
espectively.

For the implementation of all controllers, we used Python and the
o-mpc toolbox [36]. The MPC has a prediction horizon of 16 h and is
olved with CasADi [37] in Python.

.1. Model Predictive Control (MPC)

In contrast to the other control strategies, MPC requires a model.
he model is obtained from Section 2 and then reformulated to the
eneral control notation in Eq. (10),
d𝑥(𝑡)
d𝑡

= 𝑓
(

𝑥(𝑡), 𝑢(𝑡), 𝑝tv(𝑡)
)

(10a)

0 = 𝑔
(

𝑥(𝑡), 𝑢(𝑡), 𝑝tv(𝑡)
)

(10b)

𝑦(𝑡) = ℎ
(

𝑥(𝑡), 𝑢(𝑡), 𝑝tv(𝑡)
)

(10c)

where 𝑥 are states, 𝑢 control inputs, 𝑝tv time-variable parameters, and
𝑦 control outputs.

For the implementation of the model on a computer or a micro-
controller using the do-mpc Python toolbox [36], the time-continuous
formulation from Eq. (10) is discretized to Eq. (11):

𝑥[𝑘 + 1] = 𝑓
(

𝑥[𝑘], 𝑢[𝑘], 𝑝tv[𝑘]
)

(11a)

0 = 𝑔
(

𝑥[𝑘], 𝑢[𝑘], 𝑝tv[𝑘]
)

(11b)

𝑦[𝑘] = ℎ
(

𝑥[𝑘], 𝑢[𝑘], 𝑝tv[𝑘]
)

(11c)

The states, control inputs, time-variable parameters, and control
outputs are obtained from the model in Section 2 with:

𝑥[𝑘] =
(

𝑇i1 [𝑘] 𝑇m1
[𝑘] … 𝑇i𝑛 [𝑘] 𝑇m𝑛

[𝑘]
)𝖳

(12)

2 For both cases, we use the generic term heat flows A heat flow is the rate
of net heat energy transfer between hot and cold sides and can be positive or
negative for heating or cooling, respectively.
5

𝑦[𝑘] =
(

𝑇i1 [𝑘] … 𝑇i𝑛 [𝑘]
)𝖳

(13)

𝑢[𝑘] =
(

�̇�h1 [𝑘] … �̇�h𝑛 [𝑘]
)𝖳

(14)

𝑝tv[𝑘] =
(

𝑇a[𝑘] �̇�s[𝑘] 𝑝buy[𝑘]
)𝖳 (15)

• 𝑥(𝑡), 𝑥[𝑘]: states,
• 𝑦(𝑡), 𝑦[𝑘]: control outputs (measurements),
• 𝑢(𝑡), 𝑢[𝑘]: control inputs,
• 𝑝tv(𝑡), 𝑝tv[𝑘]: time-variable parameters.

The MPC uses the reformulated, discretized model from Eq. (11)–
(15) and optimizes a cost function 𝐶 in Eq. (16),

𝐶 = 𝑚(𝑥[𝑁 + 1])
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Meyer term

+
𝑁
∑

𝑘=0

⎛

⎜

⎜

⎜

⎝

𝑙(𝑥[𝑘], 𝑢[𝑘], 𝑝tv[𝑘])
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Lagrange term

+𝛥𝑢[𝑘]𝖳𝑅𝛥𝑢[𝑘]
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

R-term

⎞

⎟

⎟

⎟

⎠

(16)

here the Meyer term 𝑚(⋅) defines costs of the terminal state 𝑥[𝑁 + 1],
he Lagrange term 𝑙(⋅) the costs of each stage 𝑘, and the R-term costs
or changes in inputs.

Finally, the overall MPC optimization is formulated in Eq. (17),
ncluding a cost function in Eq. (17a), the model equations in Eq. (17b)–
17e), and constraints in Eq. (17f)–(17g).

min
[0∶𝑁+1],𝐮[0∶𝑁]

𝑁
∑

𝑘=0

(

𝑙(𝑥[𝑘], 𝑢[𝑘], 𝑝tv[𝑘]) + 𝛥𝑢[𝑘]𝖳𝑅𝛥𝑢[𝑘]
)

(17a)

subject to ∀𝑘 ∈ [0, 𝑁] ∶

𝑥0 = �̂�0 (17b)

𝑥[𝑘 + 1] = 𝑓
(

𝑥[𝑘], 𝑢[𝑘], 𝑝tv[𝑘]
)

(17c)

0 = 𝑔
(

𝑥[𝑘], 𝑢[𝑘], 𝑝tv[𝑘]
)

(17d)

𝑦[𝑘] = ℎ
(

𝑥[𝑘], 𝑢[𝑘], 𝑝tv[𝑘]
)

(17e)

𝑦lb[𝑘] ≤ 𝑦[𝑘] ≤ 𝑦ub[𝑘] (17f)

𝑢lb[𝑘] ≤ 𝑢[𝑘] ≤ 𝑢ub[𝑘] (17g)

Under the consideration of constraints, the main purpose of the
ptimization is to reduce energy costs that are formulated in the
agrange term 𝑙(⋅) in Eq. (18),

(𝑥[𝑘], 𝑢[𝑘], 𝑝tv[𝑘]) = 𝑃buy[𝑘] ⋅ 𝑝buy[𝑘] (18)

here 𝑝buy[𝑘] is the dynamic energy price at step 𝑘 and 𝑃buy[𝑘] the
ought power. This power depends on the sum of heat flows from the
ontrol inputs 𝑢 and the coefficient of performance (see Section 2.2).

In our control problem, we require no specific terminal-state 𝑥[𝑁 +
], which eliminates the Meyer term in Eq. (17a). Instead, we need our
utputs 𝑦, a subset of the states 𝑥, to remain within lower and upper
ounds 𝑦lb and 𝑦ub, as formulated in Eq. (17f). In Eq. (17g), the control
nputs 𝑢 are constrained to minimal and maximal values 𝑢lb and 𝑢ub to
nsure physical feasibility.

.2. Price Storage Control (PSC)

The PSC is a heuristic control algorithm for modulating HVAC or
eat pump heat flows �̇�h𝑗 in a multi-zone building without considering
building model. It essentially consists of four steps which it executes

n every time slot 𝑘.

1. Determine the price factor 𝜒p[𝑘] (similar to [11]).
2. Determine the storage factor 𝜒s[𝑘].
3. Calculate the modulation degree 𝜒mod using the price factor

𝜒p[𝑘] and the storage factor 𝜒s[𝑘].
4. Distribute the generated heat flow to the different rooms of the
multi-zone building.
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Fig. 2. Empirical distribution function of the electricity prices.
Price factor
The price factor quantifies the heating tendency of the heat pump

based on the current price 𝑝buy[𝑘]. To obtain the price factor 𝜒p, the al-
gorithm calculates the empirical distribution function 𝐹 (𝑝buy[𝑘]) for the
future electricity prices 𝑝buy[𝑘] of the next 24 h at the beginning of each
day. We assume that we have an electricity tariff with predetermined
prices for the next 24 h (for more information see Section 4.3). At
every time slot 𝑘 of the day, the value of the 𝐹 (𝑝buy[𝑘]) is calculated for
the current price 𝑝buy[𝑘]. The calculation of the empirical distribution
function 𝐹 (𝑝) is illustrated in Fig. 2 exemplarily for one day. 𝐹 (𝑝buy[𝑘])
quantifies the share of electricity prices for the current day that have a
lower or equal value compared to the price 𝑝buy[𝑘] of the current time
slot 𝑘. PSC sets the price factor at time slot 𝑘 as in Eq. (19). A low price
results in a high price factor (because of a low value of 𝐹 (𝑝buy[𝑘])) and
vice versa.

𝜒p[𝑘] = 1 − 𝐹 (𝑝buy[𝑘]) (19)

Storage factor
For the calculation of the storage factor 𝜒s[𝑘], the state of thermal

charge 𝑆𝑗 [𝑘] from Eq. (21) is needed for each room. The state of
thermal charge 𝑆𝑗 [𝑘] quantifies the stored thermal energy for each
room individually, based on the temperature of room 𝑗 of the last time
slot 𝑇i𝑗 [𝑘 − 1].3

𝑆𝑗 [𝑘] =
𝑇i𝑗 [𝑘 − 1] − 𝑇lb𝑗 [𝑘]

𝑇ub𝑗 [𝑘] − 𝑇lb𝑗 [𝑘]
(20)

To remain the value of 𝑆𝑗 [𝑘] between 0 and 1, we cap values of
𝑆𝑗 [𝑘] larger than 1 and smaller than 0 with 𝑆∗

𝑗 [𝑘].

𝑆∗
𝑗 [𝑘] =

⎧

⎪

⎨

⎪

⎩

𝑆𝑗 [𝑘] for 0 ≤ 𝑆𝑗 [𝑘] ≤ 1
1 for 𝑆𝑗 [𝑘] > 1
0 for 𝑆𝑗 [𝑘] < 0

(21)

The lower bound of the comfort temperature 𝑇lb𝑗 [𝑘] is subtracted
from the temperature of room 𝑗 of the last time slot 𝑇i𝑗 [𝑘 − 1]. This is
then divided by the distance between the upper bound of the comfort
temperature 𝑇ub𝑗 [𝑘] and the lower bound 𝑇lb𝑗 [𝑘].

𝑆∗
𝑗 [𝑘] = 1 means that the thermal energy storage of this room is

sufficiently full and there is no necessity for applying heat flows to the
room.4 If the temperature of the room 𝑇i𝑗 [𝑘−1] is lower than the lower
limit comfort temperature 𝑇lb𝑗 , the state of thermal charge 𝑆∗

𝑗 [𝑘] is set

3 Although the PSC method is applicable for heating or cooling heat flows,
e explain this method exemplarily for the heating case in the following.
4 As we are considering heating in the present work it has to be noted that

ull thermal storage, in this case, means, that the temperature in the room is
igh enough. For cooling, in contrast, a low enough temperature would mean
6

ull storage.
to 0. In the heating case, this results in empty thermal storage as the
temperature in the room is too low.

After having determined the state of thermal charge 𝑆∗
𝑗 [𝑘] for every

room 𝑗 (𝑗 = 1… 𝑛), the algorithm calculates the storage factor 𝜒s[𝑘]
by using Eq. (22). If the temperatures in the different rooms are close
to the upper limit, their corresponding state of thermal charge will be
high resulting in a low storage factor 𝜒s[𝑘] and vice versa.

𝜒s[𝑘] = 1 −

∑𝑛
𝑗=1 𝑆

∗
𝑗 [𝑘]

𝑛
(22)

Modulation degree of the HVAC system
The third step of the algorithm is the calculation of the heat pump’s

modulation degree and thus the heat flow and the electrical power (see
Eq. (7)) using Eq. (23). The modulation degree 𝜒mod[𝑘] results from
the multiplication of the price factor 𝜒p and storage factor 𝜒s. Because
both factors can have values between 0 and 1, the modulation degree
𝜒mod[𝑘] likewise varies between 0 and 1. We choose a multiplication of
the two factors instead of a weighted sum as this leads to better results
in our case studies. Based on the modulation degree, Eq. (6) and (7)
calculate the generated heat flows and electrical power.

𝜒mod[𝑘] = 𝜒p[𝑘] ⋅ 𝜒s[𝑘] (23)

Two factors influence the heat pump’s power output. A high elec-
tricity price leads to a low price factor which leads to low values of the
modulation degree. This results in low electricity consumption at that
time. On the contrary, a low price leads to a high price factor which
incentives the heat pump to heat the room. This is desired as we want
to generate heat flows when the electricity prices are low.

Next to the price factor, the storage factor impacts the generated
heat flows and thus consumed electricity. If the temperatures in the
rooms are generally high, the storage factor has low values because
of the high values of the state of thermal charge 𝑆∗

𝑗 [𝑘]. A low storage
factor leads to low power consumption and vice versa. This is also a
desired property of the control algorithm. If the room temperatures are
already high, there is no urgent need for heating whereas low room
temperatures tend to lead to higher generation of heat flow using the
PSC algorithm.

The described approach of PSC with the multiplication of the two
factors is just the basic version of the algorithm. PSC can easily be
adjusted and enhanced by adding additional rule-based control actions
that may depend on the used comfort model. The core of the algorithm,
however, is the use of the price and storage factor for determining the
heat pump’s modulation degree.

Distribution of heat flows
In the final step, the algorithm distributes the generated heat flows

to the different rooms 𝑗 (𝑗 = 1… 𝑛). To do this, the caused thermal
discomfort of each room 𝑑c𝑗 [𝑘] due to possibly too low temperatures is

determined. If the temperature of a room from the previous time slot
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Fig. 3. Thermal building model for each room 𝑗 (𝑗 = 1…5).
𝑇i𝑗 [𝑘 − 1] is lower than the lower temperature limit 𝑇lb𝑗 [𝑘], Eqs. (24)
and (26) quantify the caused discomfort of the room 𝑗 and the total
caused discomfort 𝑑c,total[𝑘] from Eq. (25).

𝑑c𝑗 [𝑘] = 𝑇i𝑗 [𝑘 − 1] − 𝑇lb𝑗 [𝑘] (24)

𝑑c,total[𝑘] =
𝑛
∑

𝑗=1
𝑑c𝑗 [𝑘] (25)

Based on the total caused discomfort 𝑑c,total[𝑘], the PSC algorithm
distributes the generated heat flows �̇�ℎ at each next step 𝑘 to each room
𝑗 with �̇�h𝑗 using Eq. (26). This mechanism assures that especially rooms
that have low temperatures get larger heat flows than rooms with less
need for heating. If the heat pump generates heat flows although no
room has violated its temperature boundaries in the last time slot 𝑘, it
equally distributes the generated heat flows to every room.

�̇�h𝑗 [𝑘] =
𝑑c𝑗 [𝑘]

∑𝑛
𝑗=1 𝑑c𝑗 [𝑘]

⋅ �̇�ℎ[𝑘] (26)

Overall, PSC executes the four mentioned steps for every time slot of
the day while updating the empirical distribution function of the prices
at the beginning of each day.

3.3. Hysteresis-based two-point controller

The hysteresis-based two-point control serves as the lower bench-
mark for the evaluation. This is a conventional control strategy for
heating or cooling devices that heats a room until the upper tem-
perature limit 𝑇ub𝑗 [𝑘] is reached. Afterward, the device switches off
and waits until the temperature in the room reaches the lower limit
𝑇ub𝑗 [𝑘]. This triggers the control system to start heating again. We
use an adaptive hysteresis that uses the upper and lower temperature
limits [𝑇lb𝑗 (𝑡), 𝑇ub𝑗 (𝑡)] depending on the scenarios. These predefined
temperature limits for OTS are described in the evaluation scenarios
in Section 4.2.

4. Evaluation

As we implemented all four controllers from Section 3 in Python,
we also evaluate them directly in a Python environment, based on the
Python toolbox do-mpc [36]. In do-mpc, we define the model from
Section 2 and use it for the simulation of all four control strategies.
In the following, we explain which model parameters, OTS scenarios,
data, and KPIs we use for evaluation.
7

m

Table 3
Model parameters for high and low thermal capacitance.

par. 𝐶i 𝐶m 𝑅a 𝑅i 𝑔s
unit J K−1 J K−1 KW−1 KW−1 –

high 3407040 11482560 0.07345 0.001197 1.138
low 1703520 5741280 0.07345 0.001197 1.138

4.1. Model parameters

The model parameters consist of parameters for the thermal build-
ing model and the heat pump. The thermal building model describes the
thermal characteristics between heat flows and temperatures in each
room. The heat pump model is used to calculate the required electricity
to provide heat flows, where the heat pumps’ coefficient of performance
depends on the outside temperature 𝑇a.

Multi-zone thermal building model parameters
First, we define parameter sets by obtaining model parameters from

the literature [29] and scaling them from single-zone building level
to multi-zone room level (see Fig. 3) [30]. We create two different
parameter sets, for high and low thermal capacity, to represent different
building types. The model parameters used for this evaluation are
summarized in Table 3.

The parameters for capacity, resistance, and solar heat gain can be
defined individually for each room 𝑗 (𝑗 = 1… 𝑛), as illustrated in Fig. 3
(with 𝑛 = 5). In reality, each room has different parameters5. For the
room-individual evaluation, we multiple the standard parameters from
Table 3 with different random-seed factors for each room. The random
seed is once defined and then remains constant over all simulations.
The random variable may vary in each room 𝑗 (𝑗 = 1…5) by up to
±5%.

Heat pump parameters
We use the model AERO SLM 3-11 HGL from the Austrian heat pump

manufacturer iDM Energiesysteme GmbH [39]. From the manufacturer’s
technical fact sheet, we obtain the coefficient of performance 𝜀h and
the maximum electrical power 𝑃max, as summarized in Table 4.

5 For more information about how to identify individual parameters in
ulti-zone models, we refer to our previous work [30,38].
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Table 4
Heat pump parameters for different outside air temperatures 𝑇a.
𝑇a in °C −10 −7 2 7 10 12 15 20

𝜀h 1.98 2.20 2.71 3.10 3.34 3.55 3.89 4.26
𝑃max in kW 4.20 4.39 4.83 4.62 4.40 4.41 4.00 3.32

Table 5
(a) Base scenario OTS levels for different periods and rooms.

Period/room 1 2 3 4 5

8AM to 5PM I I I I I
else off off off off off

Both parameters, 𝜀h and 𝑃max, depend on the outside air tem-
erature 𝑇a and the heating supply temperature. In this evaluation,
e selected a constant heating supply temperature of 55 °C and a
ariable outside air temperature, based on the measurements described
n Section 4.3. Between the discrete values in Table 4, we used linear
nterpolation.

.2. Scenarios for Occupants’ Thermal Satisfaction (OTS)

For the evaluation of the control algorithms, we consider two
cenarios, namely (a) base scenario and (b) multi-zone adaptive sce-
ario. The scenarios differ by their variability of temperature ranges
𝑇lb𝑗 (𝑡), 𝑇ub𝑗 (𝑡)]. The base scenario applies the same ranges for all rooms,
hile the second allows individual occupancy profiles. The temperature

anges are presented in Tables 5 and 6 and applied for each day.
lthough we assume an office scenario, we do not differentiate between

he different days, e.g. between weekdays and weekends, to simplify the
valuation.

In general, both scenarios apply the OTS levels from Table 2 in
ection 2.3. Based on the different OTS levels, we derive three different
ontrol modes, inspired by [23]:

• comfort mode: OTS level I,
• eco mode: OTS level III,
• standby mode: OTS level off.

While the comfort mode aims for the highest level of OTS, the
tandby mode consumes the fewest energy. The eco mode, however,
chedules the reference temperature by approximately ±2K difference
ompared to the comfort mode (+1.8K/-1.9K for cooling/heating, see
able 2). This eco mode saves energy compared to the comfort mode
nd also enables fast re-heating/re-cooling compared to the standby
ode [23]. In comparison to the comfort mode, the eco mode can

ave energy in rooms that are less frequently used than office rooms,
.g. bathrooms or kitchens.

a) Base scenario
We use two different control modes in the base scenario (see Ta-

le 5): the comfort and standby mode. We apply the comfort mode
uring working hours from 8AM to 5PM and the standby mode else. All
ooms 𝑗 (𝑗 = 1…5) apply the same modes during the entire evaluation
n the base scenario. As a result, the temperature ranges [𝑇lb𝑗 (𝑡), 𝑇ub𝑗 (𝑡)]
n Table 5 are all equal over the different rooms.

In contrast, the second scenario uses different modes in different
ooms, depending on the use case of each room.

b) Multi-zone adaptive scenario
As shown in Table 6, the temperature ranges [𝑇lb𝑗 (𝑡), 𝑇ub𝑗 (𝑡)] in all

ooms 𝑗 (𝑗 = 1…5) can be different. In this scenario, we also use the
co mode (OTS level III) in addition to the comfort (level I) and standby
ode (level off).

In this multi-zone adaptive scenario from Table 6, we let the control
perate with a high focus on OTS in occupied rooms and energy saving
n unoccupied. Therefore, we use the comfort mode in the offices
8

Table 6
(b) Multi-zone adaptive scenario OTS levels for different periods and rooms.

Period/room 1 2 3 4 5

8AM to 12AM I I III III III
12AM to 1PM III III III I III
1PM to 5PM I III III III III
else off off off off off

(rooms 1 and 2) during working hours and the kitchen (room 4) during
lunch breaks from 12AM to 1PM. In this scenario, the first office (room
1) is used over the entire working day, except lunch break, and the
second office (room 2) only from 8AM to 12AM (part-time job). The
bathroom (room 5) and storage (room 3) should be operated in eco
mode during working hours (8AM to 5PM).

4.3. Data

We evaluate the control strategies by using weather data during
the winter of 2022/2023, obtained from a weather station in the KIT
EnergyLab (Karlsruhe, Germany) [40]. For the evaluation, we use the
weather measurements of the solar radiation �̇�s and the ambient tem-
perature 𝑇a over a period of nine weeks (11/28/2022 – 02/06/2023).
We use the nine weeks of data in time steps of 𝛥𝑡𝑘 = 15min.

For the variable electricity tariff 𝑝buy, we use the data of the day-
ahead market in Germany from the EPEX Spot Strombörse, provided by
the aWATTar-API [41]. The price is different for every hour of the
day and we assume that these prices are directly forwarded to the
customers.

4.4. Metrics

We use two KPIs to evaluate (i) how accurately a controller meets
the desire OTS and (ii) how much energy the control strategy therefore
consumes. Mathematically we define the KPIs as the weekly costs
𝑐m,week in Eq. (27) and mean weekly discomfort 𝑑m, week in Eq. (28),

𝑐m,week =
𝑀
∑

𝑘=1

(

𝑝buy(𝑡𝑘)∫𝑡𝑘
𝑃el(𝑡𝑘) 𝑑𝑡𝑘

)

(27)

𝑑m, week = 1
𝑀

( 𝑀
∑

𝑘=1

𝑛
∑

𝑗=1
𝑑c𝑗 (𝑡𝑘)

)

. (28)

The KPIs consider energy costs and OTS during each time-step 𝑘 for
all time steps 𝑀 = 672 of each week. The energy costs 𝑐m,week depend
on a dynamic energy tariff 𝑝buy(𝑡𝑘) and the consumed electric power
𝑃el(𝑡𝑘). The discomfort 𝑑m, week evaluates the discomfort 𝑑c𝑗 (𝑡𝑘) of the
ctual room temperature from the allowed OTS range. This permit-
ed temperature range is time-variant, depending on room-individual
sage/attendance profiles, as introduced in the scenarios in Section 4.2.

Both KPIs are competing, which means when one is improved, the
ther is usually deteriorating. It is the objective to minimize both KPIs
imultaneously, to have low costs and low discomfort.

. Results

In this section, we present the results of the control strategies
rom Section 3 in the evaluation environment from Section 4. We
ompare the different control algorithms in Section 5.1, demonstrate
he feasibility of the control strategies in Section 5.2, discuss the results
n Section 5.3, and show limitations in Section 5.4.

The results cover the four different control algorithms, MPC (ideal
nd error-free), two variants of PSC, and a hysteresis-based two-point
ontroller. The second variant of PSC is a simplified version that uses
nly the price factor (PC, no storage factor) as it is done in [11]. The
verall results for different parameters and both scenarios over the
ntire evaluation period of nine weeks can be obtained from Figs. 4
nd 5. Figs. 6 and 7 illustrate the dynamic response of the thermal
uilding model to the four applied control strategies, exemplarily for
he multi-zone adaptive scenario during one week.
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Fig. 4. Control results of four controllers, evaluated in two different scenarios with low capacitance.
Fig. 5. Control results of four controllers, evaluated in two different scenarios with high capacitance.
5.1. Comparison of control performance

We perform evaluations for the four controllers in two scenarios
and on two different parameter types over nine different weeks and
summarize the results in Figs. 4 and 5. Fig. 4 shows the results for low
capacitance and Fig. 5 for high capacitance. We use Subfig. (a) for the
base case and Subfig. (b) for the adaptive. On the y-axes in Figs. 4 and
5, we visualize the two KPIs, the mean weekly costs (‘‘costs’’) and the
ean discomfort (‘‘discomfort’’) from Eq. (27) and (28).

arameters
Comparing Figs. 4 and 5 shows the difference between parameters

ith low and high capacitance. The largest difference can be obtained
or the Hysteresis with approximately 15% (e.g. in (a) from 16.81
o 14.14). In the following, we will focus on the higher capacitance
ecause it represents larger differences between the different control
trategies (see Fig. 5).

ontrollers
When evaluating the four control strategies in Fig. 5, the MPC and

SC show superior results in terms of costs and discomfort, compared to
he PC and the hysteresis-based two-point controller. In both scenarios,
he MPC and PSC have lower costs than the hysteresis-based two-point
ontroller with more than 39% and 22% better performance (e.g. in
a) from 16.81 to 10.11 and 13.08). The costs of the simplified PC are
etween PSC and Hysteresis (15% superior to Hysteresis from 16.81 to
4.36, 9% inferior to PSC from 14.36 to 13.08).
9

Scenarios
Comparing the different scenarios, the costs of the MPC depend

more severely on the evaluated scenario, (a) vs. (b), than with the other
controllers. In the base scenario, the costs of the MPC and PSC are closer
than in the adaptive scenario with 23% vs. 33% ((a): from 13.08 to
10.11 in vs. (b): 13.04 to 8.8). Comparing the adaptive scenario (b) to
the base scenario (a), PSC, PC, and Hysteresis show low differences in
costs and a slightly increased discomfort. This discomfort is more severe
with the Hysteresis than with PSC or PC (0.17 vs. 0.04 and 0.05). In
contrast, the MPC has significantly different behavior. On the one hand,
the MPC violates no comfort (0.0) in both scenarios. On the other hand,
the MPC reduces costs in the adaptive scenario (b) by 13% compared
to (a) (from 10.11 to 8.8).

Weeks
In addition to comparing the four different control strategies, pa-

rameters, and scenarios, we present the impact of the different weeks.
As the MPC yields no comfort violations, we compare the costs over all
scenarios and weeks in Table 7. As presented in Table 7, the costs of the
MPC vary from 0 to almost 30 (compare weeks 5 and 3). On average,
the MPC results in costs of 10 EUR/week.

Summary
In summary, we obtain the highest overall performance regarding

costs and discomfort with the MPC and PSC, while the hysteresis-based
two-point controller shows the lowest performance. The performance of
the simplified PC is between PSC and hysteresis. The model parameters
have the most significant influence on the Hysteresis, while MPC,

PSC, and PC show only a minor influence. The performance difference
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Table 7
Influence of the weeks on the optimal solution (MPC) with costs in EUR/week.

Week base/low base/high adap./low adap./high

1 15.15 15.15 13.89 13.33
2 20.23 20.19 18.46 17.67
3 28.82 28.89 26.58 25.31
4 4.35 4.23 3.72 3.47
5 0.08 0.01 0.00 0.00
6 1.54 1.51 1.12 1.00
7 1.08 1.00 0.80 0.66
8 8.8 9.24 7.88 8.56
9 10.93 10.77 9.75 9.17
average 10.11 10.11 9.13 8.80

between MPC and PSC depends mostly on the evaluation scenario,
where the adaptive scenario is most beneficial for the MPC.

In the following, we present insights into the results of the four
different control strategies by describing the dynamic behavior from
Figs. 6 and 7.

5.2. Demonstration of controller behavior

Figs. 6 and 7 illustrate the dynamic behavior of the four con-
trollers, MPC, PSC, PC, and hysteresis-based two-point controller, on
the multi-zone thermal building model with low and high capacitance,
respectively. First, we generally describe the plots and then show
differences between different parameters (low vs. high capacitance) and
between the different control strategies.

First, we describe the plots in Figs. 6 and 7. The 𝑥-axis uses the
ime in days for one week in December 2022. We visualize week 2 as
t represents a relatively high heating demand (see Table 7). On the
-axis, we use the air temperatures 𝑇i𝑗 in °C for five rooms (𝑗 = 1…5)
nd four control strategies. The blue area shows the permitted temper-
ture ranges for the air temperatures [𝑇lb𝑗 (𝑡), 𝑇ub𝑗 (𝑡)]. The bottom y-axes

present the controlled variable 𝑃el, and the time-variable variables 𝑇a,
̇s, and 𝑝buy.

Next, we compare the evaluation with low vs. high capacitance
(Fig. 6 vs. 7). A lower capacitance shows higher temperature changes
from equal heat flows (e.g. see height of temperature peak with MPC).
Except for this more sensitive temperature behavior with lower capac-
itance, the results are relatively similar for both parameters.

Finally, we compare the four different control strategies MPC, PSC,
PC, and Hysteresis. With MPC, the temperature is as low as possible
while meeting the temperature constraints during all periods. With
MPC, heating is only applied when the electricity price is at the lowest
value, resulting in a cost-optimal ‘pre-heating’ behavior. Also PSC and
PC show heating during low electricity prices. However, with PSC and
PC, the temperature levels are generally higher than with MPC. Also,
PSC reaches lower temperatures than PC, which reduces the amount of
used electricity. In contrast to MPC, PSC, and PC, the Hysteresis shows
no explicit reaction to the electricity price. Instead, the Hysteresis has
an on/off heating behavior.

Overall, the results from Fig. 6 vs. 7 illustrated the feasibility to
control a multi-zone thermal building environment with differently
complex control strategies. The different controllers showed different
heating behaviors and resulting temperatures.

5.3. Discussion

In this section, we discuss the results from Sections 5.1 and 5.2
and the differences between parameters, scenarios, controllers, and
weeks. Depending on the controller’s complexity, the decision-making
process of the controllers can include variables such as room-individual
temperature limits, the electricity price, weather conditions, or room-
individual thermal building dynamics (from a building model). In the
following, we further discuss the results.
10
Parameters
The higher thermal sensitivity towards heat flows �̇� of the eval-

uation environment with lower thermal capacitance 𝐶 results from
the inverse proportionality between temperature changes 𝛥𝑇 and heat
capacitance: 𝛥𝑇 = 1

𝐶 ⋅ �̇� (see Eq (2)). As a result, with more heat
capacitance more internal energy (heat) can be stored.

Although all control strategies generally exploit the thermal capac-
itance, only MPC explicitly uses a model for it in its decision-making
process. The impact of the different control strategies is discussed in
the following.

Controllers
The four controllers differ in their complexity and how much knowl-

edge about future system behavior they require. Depending on the
controller’s complexity, the performance varies in the present study.
The control performance of the PSC is superior to the hysteresis-based
two-point controller and inferior to the ideal MPC. The simplified PC
performs between PSC and Hysteresis.

The hysteresis-based two-point controller uses only minimal and
maximal temperatures [𝑇lb𝑗 (𝑡), 𝑇ub𝑗 (𝑡)] without any forecasts or models.
When a maximal temperature is reached, it heats over a defined period.
As no explicit knowledge about the energy price can be considered, this
control strategy is relatively cost-ineffective.

The PSC requires knowledge about the temperature ranges, but
also about the energy tariff and the heat pump modulation. It tries
to meet a reference temperature that is in the middle of the minimal
and maximal ranges, while also considering periods of low energy
prices. Exploiting this knowledge reduces the energy costs of the PSC
compared to the hysteresis-based two-point controller because the PSC
can apply heating during periods of low energy prices. Compared to
PSC, the simplified PC heats more conservatively as no storage factor
is applied.

The MPC uses the largest amount of available information, which
increases its performance accordingly. It does not only use temperature
ranges, energy tariffs, and heat pump modulation. In addition, the
MPC needs a thermal building model and weather forecasts. With that
internal control model and the forecasts, the MPC can predict future
system behavior in advance and schedule the heating load optimally.
As a result, the MPC applies the lowest possible temperatures to save
energy and pre-heats in advance during the lowest energy prices to
additionally save costs.

Scenarios
The most striking result in the evaluation of the scenarios, (a) base

vs. (b) multi-zone adaptive scenario, was obtained with the MPC. While
PSC, PC, and Hysteresis yielded only insignificant cost differences be-
tween both scenarios, the MPC reduced costs by up to 13%. The results
indicate the potential of room-individual building control with relaxed
constraints based on individual occupancy presence. During unoccu-
pied periods, the MPC could save energy by reducing the temperature
to its full potential.

Weeks
The costs for heating vary significantly based on the evaluated

week, from 0 to almost 30. The weeks differ not only by the weather
conditions and the resulting heating demand but also by the electricity
price. As single weeks cannot yield sufficiently representative results,
averaging over multiple weeks is required for meaningful results.

Summary
Overall, the results demonstrated the importance and feasibility of

multi-zone building control. We presented differently complex con-
trol strategies that can be applied depending on the availability of
temperature ranges, forecasts, and models. With more information
available, the control performance can be increased. Even when no
models are available, adequate performance can be obtained with our
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Fig. 6. Control results in the adaptive scenario with low capacitance for week 2.
proposed PSC control strategy. The four developed control strategies
are applicable to a variety of buildings as we presented different eval-
uation parameters with high and low capacitance and for two different
scenarios with different temperature constraints.

The controllers perform as expected where a higher complexity and
use of more information improve the control quality. While the PSC
outperforms the hysteresis-based two-point controller and simplified
PC, PSC is inferior to an ideal MPC. On the one hand, the MPC showed
potential for cost optimization in thermal building control, especially
in the multi-zone adaptive scenario. On the other hand, the MPC is
significantly more complex to design than other strategies, requiring
a thermal model for each room and a forecast, which we both assumed
to be error-free for our case study.

5.4. Limitations

The evaluation of control strategies in this work is based on simula-
tion results, which can neglect several effects from the real application.
The control strategies are performed on a multi-zone thermal building
model instead of a real building. The model parameters are based on
11
literature values instead of identification from parameter identification.
The model and weather forecasts of the MPC are assumed as error-free.

The evaluation is limited to a heating scenario, where weather data
is used for nine weeks during winter in Karlsruhe, Germany. A cooling
scenario is not investigated because the cooling demand in Germany
is lower than in other regions of the world. The evaluated scenarios
consider no self-produced Photovoltaic (PV), battery, appliances, or
thermal water storage in the optimization.

6. Conclusion

In this study, we investigate how a novel multi-zone Price Storage
Control (PSC) can provide Demand Response (DR) while considering
room-individual Occupants’ Thermal Satisfaction (OTS) without using
a thermal building model and weather forecasts. Therefore, we develop
four different control strategies, a multi-zone evaluation environment
with different thermal parameters for high and low thermal capac-
itance, and two different scenarios to compare the controllers. We
compare the PSC with an ideal, error-free Model Predictive Control

(MPC), with a simplified variant without a storage factor (PC), and
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Fig. 7. Control results in the adaptive scenario with high capacitance for week 2.
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ysteresis-based two-point controller as upper and lower benchmarks,
espectively.

The ideal MPC and PSC achieve higher control performance than
he hysteresis-based two-point controller in terms of energy costs and
ean discomfort in all scenarios and for all parameters. With high

apacitance, the PSC leads to a cost reduction of 22%, PC 15%, while
the MPC achieves improvements of more than 39%. Under consider-
ation that the PSC requires no models and no forecasts, this control
strategy seems especially beneficial for real-world control applications.
Our developed control approach is easy to implement and can be
used for every building without large-scale adjustments. Further, it can
include other external signals in its decision-making like the load of
the electricity grid or a generation signal of renewable energy sources.
Thus, it can contribute to balancing electricity demand and supply and
lead to better utilization of renewable energy sources in future energy
systems.

In future work, we want to apply the developed control strategy to
a real-world application. For the MPC real-world application, we need
to perform parameter identification and design a state estimator. For a
12

more realistic scenario, we plan to include more relevant components
into the optimization, e.g. thermal water storage, Photovoltaic (PV)
self-production and -consumption, and batteries.
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