206 research outputs found

    Analysis of subgingival microbiota in monozygotic twins with different severity and progression risk of periodontitis

    Get PDF
    The study aims to reveal the composition of subgingival bacteria in monozygotic twins with discordant in severity and progression risk of periodontitis. Microbiome analysis indicated that most bacteria were heritable but differed in their abundance and immune response. The dysbiotic bacteria can be considered as risk markers for periodontitis progression

    Biomagnetic recovery of selenium: Bioaccumulating of selenium granules in magnetotactic bacteria

    Get PDF
    Using microorganisms to remove waste and/or neutralize pollutants from contaminated water is attracting much attention due to the environmentally friendly nature of this methodology. However, cell recovery remains a bottleneck and a considerable challenge for the development of this process. Magnetotactic bacteria are a unique group of organisms that can be manipulated by an external magnetic field due to the presence of biogenic magnetite crystals formed within their cells. In this study, we demonstrated the first account of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria alongside and independently to magnetite crystal biomineralisation when grown in a medium containing selenium oxyanion (SeO3 (2-)). Quantitative analysis shows that magnetotactic bacteria accumulate the highest amount of target molecules (Se) per cell than any other previously reported of non-ferrous metal/metalloid. For example, 2.4 and 174 times more Se is accumulated when compared to Te uptaken into cells and Cd(2+) adsorption onto the cell surface respectively. Crucially, the bacteria with high levels of Se accumulation were successfully recovered with an external magnetic field. This biomagnetic recovery and effective accumulation of target elements demonstrate the potential for application in bioremediation of polluted water. IMPORTANCE: The development of a technique for effective environmental water remediation is urgently required across the globe. A biological remediation process of waste removal and/or neutralization of pollutant from contaminated water using microorganism has great potential, but cell recovery remains a bottleneck. Magnetotactic bacteria synthesize magnetic particles within their cells, which can be recovered by a magnetic field. Herein, we report the first example of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria independent of magnetic particle synthesis. The cells were able to accumulate the highest amount of Se compared to other foreign elements. More importantly, the Se accumulating bacteria were successfully recovered with an external magnetic field. We believe magnetotactic bacteria confer unique advantages of biomagnetic cell recovery and of Se accumulation, providing a new and effective methodology for bioremediation of polluted water

    Synthetic studies on pterin glycosides: the first synthesis of 2′-O-(α-d-glucopyranosyl)biopterin

    Get PDF
    L-Rhamnose was led, in a 14-step-sequence, to N2-(N,N-dimethylaminomethylene)-1′-O-(4-methoxybenzyl)-3-[2-(4-nitrophenyl)ethyl]biopterin (23), an appropriately protected precursor for 2′-O-glycosylation, while 4,6-di-O-acetyl-2,3-di-O-(4-methoxybenzyl)-α-d-glucopyranosyl bromide (32), a novel glycosyl donor, was efficiently prepared from d-glucose in 8 steps. The first synthesis of 2′-O-(α-d-glucopyranosyl)biopterin (2a) was achieved by treatment of the key intermediate 23 with 32 in the presence of silver triflate and tetramethylurea, followed by successive removal of the protecting groups
    corecore