Synthetic Studies on Pterin Glycosides: The First Synthesis of 2'-O-(α-D-Glucopyranosyl)biopterin

Tadashi Hanaya, Hiroki Baba, Hiroki Toyota, Hiroshi Yamamoto

NPE: p-nitrophenylethyl

Synthetic Studies on Pterin Glycosides: The First Synthesis of 2'-O-(α-D-Glucopyranosyl)biopterin

Tadashi Hanaya ${ }^{\text {a, },}$, Hiroki Baba, ${ }^{\text {a }}$ Hiroki Toyota, ${ }^{\text {a }}$ Hiroshi Yamamoto ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
${ }^{\text {b }}$ School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan

Abstract

L-Rhamnose was led, in a 14 -step-sequence, to N^{2}-(N, N-dimethylaminomethylene)-1' $-O$ -(4-methoxybenzyl)-3-[2-(4-nitrophenyl)ethyl]biopterin (23), an appropriately protected precursor for 2'-O-glycosylation, while 4,6-di- O-acetyl-2,3-di- O-(4-methoxybenzyl)- α-D-glucopyranosy bromide (32), a novel glycosyl donor, was efficiently prepared from D-glucose in 8 steps. The first synthesis of 2'-O-(α-D-glucopyranosyl)biopterin (2a) was achieved by treatment of the key intermediate $\mathbf{2 3}$ with $\mathbf{3 2}$ in the presence of silver triflate and tetramethylurea, followed by successive removal of the protecting groups.

Key words: Pterin glycoside; Pteridine; Glycosylation; Protecting group; Total synthesis

1. Introduction

A variety of pterin derivatives having a hydroxyalkyl side-chain at $\mathrm{C}-6$, a representative example being biopterin (1), have been found in nature. Some of them isolated from certain prokaryotes possessed a glycosidic form having a sugar attached to the side-chain (Figure 1); for example, 2'-O-(α-D-glucopyranosyl)biopterin (2a) and limipterin [2'-O-(2-acetamido-2-deoxy- β-D-glucopyranosyl)biopterin] (3) ${ }^{5}$ were isolated from cyanobacteria and a green sulfur photosynthetic bacterium, respectively. Various other glycosides consisting of different pterins (such as ciliapterin, ${ }^{6}$ neopterin, ${ }^{7}$ and 6 -hydroxymethylpterin ${ }^{8}$) and sugar moieties (such as D-ribose, D-mannose, D-galactose, and D-glucronic acid) have also been isolated from cyanobacteria, anaerobic photosynthetic bacteria, and chemoautotrophic archaebacteria, although the glycosidic linkages of some derivatives remain unclear. Among these pterin glycosides, biopterin α-D-glucoside (2a) is the most noteworthy because of its abundant occurrence in various kinds of cyanobacteria, Anacystis nidulans, ${ }^{1}$ Oscillatoria sp., ${ }^{2}$ Synechococcus sp., ${ }^{3}$ and Spirulina platensis, ${ }^{4}$ but there has been no report for synthesis of 2a since its first discovery in 1958.

[^0]
$1 \mathrm{R}=\mathrm{H}$ (biopterin)

$3 R=$

Figure 1. Structures of biopterin and its glycosides

The physiological function of the parent pterins has been studied in detail: for example, $\mathbf{1}$ plays, in the form of its tetrahydro derivative, an important role as an enzyme cofactor in aromatic amino acid hydroxylation ${ }^{9}$ and nitric oxide synthesis. ${ }^{10}$ By contrast, the functional roles of pterin glycosides have remained obscure, although some inhibitory activities against tyrosinase ${ }^{11}$ and photostabilization of photosynthetic pigments ${ }^{4,12}$ were reported for 2a. Despite a considerable interest from the viewpoint of their biological activities and functions, as well as structural proof of hitherto reported natural products, attempts at preparation of pterin glycosides have so far scarcely been made, except for our synthetic studies on limipterin (3) and ciliapterin glycosides. ${ }^{13,14}$

We reported in a previous paper ${ }^{13}$ that the glycosylation of a biopterin derivative whose two hydroxy groups were unprotected did not yield the $2^{\prime}-O-(D-g l u c o p y r a n o s y l) b i o p t e r i n s ~ w i t h ~ h i g h ~ s e l e c t i v i t y: ~ f o r ~$ example, treatment of N^{2}-(N, N-dimethylaminomethylene)-3-[2-(4-nitrophenyl)ethyl]biopterin (4) with tetera-O-benzoyl- α-D-glucopyranosyl bromide (5) ${ }^{15}$ (3 mol equiv.) in the presence of tin (IV) chloride afforded 2'-O-(β-D-glucopyranosyl)biopterin (6) (41\% yield), together with 1'-O-glycosyl isomer 7 (15%) and $1^{\prime}, 2$ '-di- O-glycosyl derivative $\mathbf{8 (1 4 \%)}$ (Scheme 1). These results prompted us to develop a more efficient protocol for selective $2^{\prime}-O$-monoglycosylation. In addition, we undertook preparation of an effective glycosyl donor leading to preponderant production of pterin α-glycosides instead of β-glycosides. We give herein a full account of the first, efficient synthesis of the representative, natural pterin glycoside, $2^{\prime}-O-\left(\alpha\right.$-D-glucopyranosyl)biopterin (2a). ${ }^{16}$

Scheme 1.

2. Results and discussion

A retrosynthetic analysis for $\mathbf{2 a}$ is outlined in Scheme 2. The biopterin derivative 9, whose pyrimidine ring moiety and 1 '-hydroxy group of the side chain are protected, can be perceived as the key precursor to accomplish complete $2^{\prime}-O$-glycosylation, while the pteridine ring formation of 9 would be achieved by condensation of 2,5,6-triamino-4-hydroxypyrimidine with the pentos-2-ulose $\mathbf{1 0}$, which would be derived from the $4-O$-protected L-rhamnose $\mathbf{1 2}$ via the 3 - O-protected 5 -deoxy-L-arabinose $11 .{ }^{17}$ A rational consideration of the available conditions to remove the protecting groups of the glycoside derived from 9 led us to employ p-methoxybenzyl (PMB) group for protection of 1'-hydroxy, N, N-dimethylaminomethylene group for 2-amino, and 2-(4-nitrophenyl)ethyl (NPE) group for $\mathrm{N}-3$ of the ring. ${ }^{18}$

Scheme 2.

L-Rhamnose, which served as the starting material to obtain the key intermediate 5-deoxy-3-O-PMB-L-arabinose (19), was subjected to glycosidation with allyl alcohol in the presence of hydrochloric acid, followed by acetalization with 2,2-dimethoxypropane, providing allyl 2,3-O-isopropylidene- α-L-rhamnopyranoside (13) ${ }^{19}(80 \%$) along with the corresponding β-anomer (8%) (Scheme 3). Treatment of $\mathbf{1 3}$ with p-methoxybenzyl chloride and sodium hydride in DMF gave the 4-O-PMB derivative 14, which was then converted into the 1-propenyl glycoside 15 with potassium tert-butoxide in DMSO. Hydrolysis of 15 in 70% acetic acid ${ }^{20}$ afforded 4-O-PMB-L-rhamnopyranose (16).

The cleavage of C-1 of $\mathbf{1 6}$ was accomplished by application of the Hough and Taylor's procedures ${ }^{21}$ with a slight modification. Namely, treatment of $\mathbf{1 6}$ with ethanethiol in the presence of p-toluenesulfonic acid in acetic acid gave the dithioacetal 17, which was then oxidized with m-chloroperbenzoic acid ($m \mathrm{CPBA}$) to the corresponding sulfone $\mathbf{1 8}$. Degradation of $\mathbf{1 8}$ with dilute aqueous ammonia afforded 5 -deoxy-3- O-PMB-L-arbinofuranose (19). The selective oxidation for 2-hydroxy group of $\mathbf{1 9}$ with cupric acetate ${ }^{22}$ provided the L-erythro-pentos-3-ulose derivative $\mathbf{2 0}$.

Scheme 3.

The pteridine ring formation of $\mathbf{2 0}$ with 2,5,6-triamino-4-hydroxypyrimidine sulfate was carried out in aqueous sodium bicarbonate solution to give an inseparable mixture of the biopterin derivative 21a and its C-7 substituted isomer 21b in a ratio of 78:22. These products were separated by column chromatography after having been subjected to the three-step-procedures for introduction of N, N-dimethylaminomethylene, acetyl, and NPE groups, thus providing 2^{\prime} - O-acetyl- N^{2}-(N, N-dimethylaminomethylene)-1'-O-PMB-3-NPE-biopterin (22a) (53% overall yield from 20) and its C-7 substituted congener 22b (17\%). ${ }^{14}$

Methanolysis of $2^{\prime}-O$-acetyl-1'- O-PMB-biopterin derivative 22a in the presence of sodium methoxide provided the 1 '-O-PMB derivative 23, a versatile precursor for 2'-O-monoglycosylation (Scheme 4). Glycosylation of $\mathbf{2 3}$ was then examined by use of tetra- O-benzoyl- α-D-glucopyranosyl bromide (5) as a glycosyl donor in the presence of various activators. While treatment of $\mathbf{2 3}$ with $\mathbf{5}$ in dichloromethane at room temperature in the presence of tetrabutylammonium bromide and N-ethyldiisopropylamine ${ }^{23}$ did not proceed, the same reaction in the presence of tin (IV) chloride ${ }^{13}$ as an activator resulted in the formation of diol 4, instead of glycosylation, by cleavage of PMB group. Efficient glycosylation of $\mathbf{2 3}$, however, was attained by the condensation with 3.0 mol equiv. of $\mathbf{5}$ in the presence of silver triflate (2.0 mol equiv.) and tetramethylurea (TMU) ${ }^{24}$ (1.0 mol equiv.) in dichloromethane at room temperature for 3 h , giving the 2^{\prime} - O-(β-D-glucopyranosyl)biopterin derivative 24 as a sole product in 75% yield.

24

Scheme 4.

Removal of the protecting groups of $\mathbf{2 4}$ was performed by the following 4-step-procedures: first, cleavage of PMB by use of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) to afford $\mathbf{6}$ in 88%, then the three successive treatment with sodium methoxide (to cleave benzoyl groups), aqueous ammonia (to
cleave the N, N-dimethylaminomethylene group), and DBU (to cleave the NPE group) ${ }^{18}$ furnished $2^{\prime}-O$-(β-D-glucopyranosyl)biopterin (2b), the anomeric isomer of the natural product, in 89% overall yield from 6. Structure of $\mathbf{2 b}$ was unambiguously established as the corresponding hexaacetyl derivative $\mathbf{2 5 b}$ obtained by usual acetylation. Treatment of $\mathbf{2 5 b}$ with aqueous ammonia regenerated $\mathbf{2 b}$ quantitatively. The precise ${ }^{1} \mathrm{H}$ NMR parameters of $\mathbf{2 5 b}$ and $\mathbf{2 b}$ are summarized in Tables 1 and 2.

This successful synthesis of biopterin 2'-O- β-D-glucoside (2b) led us to execute preparation of the natural product, biopterin 2'-O- α-D-glucoside (2a). The stereoselective formation of the β-glycoside $\mathbf{2 4}$ from 23 was mainly caused by participation of the $2-O$-benzoyl group of the glycosyl donor $\mathbf{5}$ through the formation of an acyloxonium ion intermediate. ${ }^{25}$ Accordingly, in order to avoid such a neighboring group participation, we sought to introduce an ether substituent for protection of 2-OH of a glycosyl donor. Taking into consideration the available combination of protecting groups employed for the synthetic pathway, PMB and acetyl groups were respectively chosen for protection of 2,3-OH and 4,6-OH. We thus undertook the preparation of methyl 4,6-di- O-acetyl-2,3-di- O-PMB-1-thio- β-D-glucopyranose (31) and its α-D-glucopyranosyl bromide derivative 32, the potential glycosyl donors for the pterin α-glycosides, starting with penta- O-acetyl- β-D-glucopyranose (26) ${ }^{26}$ which is readily available from D-glucose (Scheme 5).

Scheme 5.

Treatment of $\mathbf{2 6}$ with thiourea and boron trifluoride etherate, followed by the action of methyl iodide and triethylamine, gave rise to the methyl 1-thio- β-D-glucopyranose derivative 27. ${ }^{27}$ Methanolysis of 27 in the presence of sodium methoxide and the subsequent acetalization with 2,2-dimethoxypropane in the presence of p-toluenesulfonic acid provided the $4,6-O$-isopropylidene derivative $\mathbf{2 8}$. Treatment of $\mathbf{2 8}$ with p-methoxybenzyl chloride and sodium hydride in DMF gave the 2,3-di-O-PMB derivative 29. Hydrolysis of 29 in 70% acetic acid provided methyl 2,3-di- O-PMB-1-thio- β-D-glucopyranoside (30), which was then acetylated to give the desired 4,6-di- O-acetyl derivative 31. Then the thioglycoside $\mathbf{3 1}$ was transformed to the correponding D-glucopyranosyl bromide $\mathbf{3 2}$ by the action of bromine in dichloromethane in the presence of 2,6-lutidine.

Glycosylation of the 1'-O-PMB-biopterin derivative $\mathbf{2 3}$ with glycosyl donors (31, 32) was examined under various conditions in the presence of activators (Scheme 6). Treatment of $\mathbf{2 3}$ with the thioglycoside 31 in dichloromethane at room temperature in the presence of methyl triflate ${ }^{28}$ or N-iodosuccinimide-silver triflate ${ }^{29}$ as activators resulted in the formation of unidentified, decomposed compounds instead of the desired glycoside. ${ }^{30}$ Glycosylation of $\mathbf{2 3}$ with 4.0 mol equiv. of the glycosyl bromide 32 in dichloromethane in the presence of tetrabutylammonium bromide and N-ethyldiisopropylamine did not proceed, whereas the same reaction in the presence of silver triflate (2.0 mol equiv.) and tetramethylurea (TMU) (1.0 mol equiv.) afforded an inseparable anomeric mixture ($85: 15$) of the $2^{\prime}-O$-(α-D-glucopyranosyl)biopterin derivative 33a and its β-anomer 33b in 66% yield, along with the recovery of $\mathbf{2 3}$ (24\%). Separation of these isomers was achieved by removal of PMB groups and the subsequent acetylation. Thus, the mixture of $\mathbf{3 3 a}, \mathbf{b}$ was treated with DDQ in dichloromethane, followed by acetylation with acetic anhydride in pyridine, afforded the 2'-O-(2,3,4,6-tetra- O-acetyl- α-D-glucopyranosyl)biopterin derivative 34a in 51\% (total yield from 23) and its β-anomer 34b in 9%. The α-anomeric structure of $\mathbf{3 4 a}$ was derived from its $J_{1,2}$ value (3.9 Hz) of ${ }^{1} \mathrm{H}-\mathrm{NMR}$, while the larger $J_{1,2}$ value $(8.1 \mathrm{~Hz}$) confirmed the β-form of $\mathbf{3 4 b}$ (Table 1).

Scheme 6.

Removal of the protecting groups of 34a was accomplished in the following manner: 34a was treated with aqueous ammonia to cleave the N, N-dimethylaminomethylene and acetyl groups and then with DBU to cleave NPE group, furnishing the desired 2'-O-(α-D-glucopyranosyl)biopterin (2a) in 90\% overall yield. For the purpose of structural confirmation and further purification, as in the case of the
β-isomer 2b, the α-isomer 2a was converted into the hexaacetyl derivative 25a, which regenerated $\mathbf{2 a}$ upon ammonolysis. The precise parameters obtained on ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{2 a}$ and $\mathbf{2 5 a}$ are listed in Tables 1 and 2. The spectral data of the synthetic α-glucoside 2a were found to be essentially identical with those reported for natural product ${ }^{4,11}$ (Table 2).

The considerable difference between the $J_{1^{\prime}, 2^{\prime}}$ values of $\mathbf{2 a}(7.1 \mathrm{~Hz})$ and $\mathbf{2 b}(4.9 \mathrm{~Hz})$ indicates that these isomers are likely to exist in different rotamors along $\mathrm{C}-1^{\prime}-\mathrm{C}-2^{\prime}$ of the pterin side-chain. Accordingly we have calculated the most favorable conformations of 2a,b using semi-empirical (MOPAC PM3) ${ }^{31}$ methods. As depicted in Figure 2, the optimized structure (A) for 2a has anti $\mathrm{H}-\mathrm{C}-1$ '- $\mathrm{C}-2^{\prime}-\mathrm{H}$ conformation, whereas that for $\mathbf{2 b}(\mathbf{B})$ has the gauche conformation. Moreover, an extraordinary upfield shift observed for the H-5 signal ($\delta 2.40$) of the D-glucopyranosyl moiety of 2a in comparison with the relatively normal value ($\delta 3.43$) of the corresponding β-glucoside ($\mathbf{2 b}$) could be explained in terms of such a conformation as $\mathrm{H}-5$ of the sugar moiety locating above the pterin ring where an appreciable shielding effect is exerted, as visualized in its optimized structure (A).

A

B

Figure 2. The optimized structures \mathbf{A} (for $\mathbf{2 a}$) and \mathbf{B} (for $\mathbf{2 b}$) based on MOPAC PM3 methods.

3. Conclusion

We have developed a novel, effective way for selective preparation of both pterin 2 '-O- β - and 2'-O- α-glycosides. By use of the key intermediate 1^{\prime}-O-PMB-biopterin derivative $\mathbf{2 3}$ and the novel glycosyl donor 32 the first synthesis of biopterin α-D-glucoside (2a) was achieved. This synthetic strategy has proved a useful method applicable to a series of other natural pterin glycosides and their analogs.

4. Experimental

4.1. General procedures

All reactions were monitored by TLC (Merck Silica gel $60 \mathrm{~F}_{254}$) with an appropriate solvent system. Column chromatography was performed with Daiso Silica Gel IR-60/210w. Components were detected by exposing the plates to UV light and/or $20 \% \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{EtOH}$, with subsequent heating. The NMR spectra were measured in CDCl_{3} with Varian Unity Inova AS600 (600 MHz for ${ }^{1} \mathrm{H}, 151 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) or Mercury300 (300 MHz for ${ }^{1} \mathrm{H}$) at $23{ }^{\circ} \mathrm{C}$. Chemical shifts are reported as δ values relative to CHCl_{3} (7.26 ppm) for ${ }^{1} \mathrm{H}$ and $\mathrm{CDCl}_{3}(77.00 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ as an internal standard, unless otherwise stated. Optical rotations were measured with a JASCO P-1020 polarimeter in CHCl_{3}.

4.2. Allyl 2,3-O-isopropylidene- α-L-rhamnopyranoside (13) ${ }^{19}$ and its $\boldsymbol{\beta}$-anomer

The following modification of the literature procedures was made. To a solution of L-rhamnose monohydrate ($3.56 \mathrm{~g}, 19.5 \mathrm{mmol}$) in allyl alcohol $(28 \mathrm{~mL})$ was added 4 M HCl in dioxane $(6.0 \mathrm{~mL}, 24$ $\mathrm{mmol})$. The mixture was refluxed for 2 h , neutralized with TEA (10 mL), and concentrated in vacuo. The residue was dissolved in toluene (20 mL) and evaporated in vacuo to remove allyl alcohol three times. The residual syrup was dissolved in dry acetone (12 mL) and 2,2-dimethoxypropane ($9.6 \mathrm{~mL}, 78 \mathrm{mmol}$) and then p-toluenesulfonic acid monohydrate ($30 \mathrm{mg}, 0.16 \mathrm{mmol}$) was added. The mixture was stirred at rt for 10 h and then TEA (5 mL) was added. The mixture was concentrated in vacuo and the residue was purified by column chromatography with 1:4 AcOEt-hexane to give 13 ($3.83 \mathrm{~g}, 80 \%$) (lit. ${ }^{19} 68 \%$ yield on acetalization with acetone alone) and its β-anomer ($372 \mathrm{mg}, 7.8 \%$).

13: Colorless syrup; $R_{f}=0.67$ ($1: 1$ AcOEt-hexane); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.29\left(3 \mathrm{H}, \mathrm{d}, J_{5,6}=\right.$ $\left.6.3 \mathrm{~Hz}, \mathrm{H}_{3}-6\right), 1.35,1.52\left(3 \mathrm{H}\right.$ each, $\left.2 \mathrm{~s}, \mathrm{CMe}_{2}\right), 2.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HO}-4), 3.40\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=9.4, J_{3,4}=7.2\right.$ $\mathrm{Hz}, \mathrm{H}-4), 3.68(1 \mathrm{H}, \mathrm{dq}, \mathrm{H}-5), 4.00\left(1 \mathrm{H}, \mathrm{ddt}^{\prime}, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=12.7, J_{1^{\prime} \mathrm{b}, 2^{\prime}}=6.4, J_{1^{\prime} \mathrm{b}, 3^{\prime} \mathrm{Z}}=J_{1^{\prime} \mathrm{b}, 3^{\prime} E}=1.3 \mathrm{~Hz}, \mathrm{H}^{\mathrm{b}}-1^{\prime}\right.$ of allyl), $4.09\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=5.7 \mathrm{~Hz}, \mathrm{H}-3\right), 4.16\left(1 \mathrm{H}, \mathrm{d}, J_{1,2}=0.7 \mathrm{~Hz}, \mathrm{H}-2\right), 4.19\left(1 \mathrm{H}, \mathrm{ddt}, J_{1 \mathrm{a}^{\mathrm{a}}, 2^{\prime}}=5.3, J_{1^{\prime} \mathrm{a}, 3^{\prime} E}\right.$ $=J_{1^{\prime}, 3^{\prime} Z}=1.6 \mathrm{~Hz}, \mathrm{H}^{\mathrm{a}}-1^{\prime}$ of allyl), $5.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1), 5.21\left(1 \mathrm{H}, \mathrm{dq}, J_{2^{\prime}, 3^{\prime} E}=10.5, J_{3^{\prime} E, 3^{\prime} \mathrm{Z}}=2.0 \mathrm{~Hz}, \mathrm{H}^{E}-3^{\prime}\right.$ of allyl), $5.30\left(1 \mathrm{H}, \mathrm{dq}, J_{2^{\prime}, 3^{\prime} \mathrm{Z}}=17.1 \mathrm{~Hz}, \mathrm{H}^{Z}-3^{\prime}\right.$ of allyl), 5.90 ($1 \mathrm{H}, \mathrm{dddd}, \mathrm{H}-2$ ' of allyl).
β-Anomer of 13: Pale yellow prisms; mp $52-53{ }^{\circ} \mathrm{C}$ (from AcOEt-hexane); $[\alpha]_{\mathrm{D}}{ }^{27}+80.1^{\circ}(c=2.50$, $\left.\mathrm{CHCl}_{3}\right) ; R_{f}=0.38(1: 1 \mathrm{AcOEt}-\mathrm{hexane}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.34\left(3 \mathrm{H}, \mathrm{d}, J_{5,6}=6.1 \mathrm{~Hz}, \mathrm{H}_{3}-6\right)$, 1.39, 1.57 (3 H each, $2 \mathrm{~s}, \mathrm{CMe}_{2}$), $2.25\left(1 \mathrm{H}, \mathrm{br}\right.$ s, HO-4), $3.29\left(1 \mathrm{H}, \mathrm{dq}, J_{4,5}=9.8 \mathrm{~Hz}, \mathrm{H}-5\right), 3.53\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4}\right.$ $=7.3 \mathrm{~Hz}, \mathrm{H}-4), 4.02\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=5.6 \mathrm{~Hz}, \mathrm{H}-3\right), 4.18\left(1 \mathrm{H}, \mathrm{ddt}, J_{1^{\prime}{ }^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=12.9, J_{1^{\mathrm{r}}, 2^{\prime}}=6.8, J_{1^{\mathrm{r}}, 3^{\prime} \mathrm{Z}}=J_{1^{\prime} \mathrm{b}, 3^{\prime} \mathrm{E}}\right.$ $=1.2 \mathrm{~Hz}, \mathrm{H}^{\mathrm{b}}-1$ ' of allyl), $4.24\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2}=2.2 \mathrm{~Hz}, \mathrm{H}-2\right), 4.43\left(1 \mathrm{H}, \mathrm{ddt}, J_{1^{\prime} \mathrm{a}, 2^{\prime}}=4.9, J_{1^{\prime} \mathrm{a}, 3^{\prime} E}=J_{1}{ }^{\mathrm{a}, 3^{\prime}{ }^{\prime} \mathrm{Z}}=1.6\right.$ $\mathrm{Hz}, \mathrm{H}^{\mathrm{a}}-1$ ' of allyl), $4.78(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1), 5.23\left(1 \mathrm{H}\right.$, dddd, $J_{2^{\prime}, 3^{\prime} E}=10.5, J_{3^{\prime}, 3^{\prime} Z}=2.0 \mathrm{~Hz}, \mathrm{H}^{E}-3^{\prime}$ of allyl), 5.31 (1 H , dddd, $J_{2^{\prime}, 3^{\prime} \mathrm{Z}}=17.3 \mathrm{~Hz}, \mathrm{H}^{Z}-3^{\prime}$ of allyl), $5.94\left(1 \mathrm{H}\right.$, dddd, $\mathrm{H}-2^{\prime}$ of allyl). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5}$: C, 59.00; H, 8.25. Found: C, 58.89; H, 8.45.

4.3. Allyl 2,3-O-isopropylidene-4-O-(4-methoxybenzyl)- α-L-rhamnopyranoside (14)

To a solution of $\mathbf{1 3}(620 \mathrm{mg}, 2.54 \mathrm{mmol})$ and p-methoxybenzyl chloride ($0.69 \mathrm{~mL}, 5.09 \mathrm{mmol})$ in dry

DMF (6.0 mL) was added tetrabutylammonium iodide ($281 \mathrm{mg}, 0.726 \mathrm{mmol}$) and then sodium hydride $(60 \%$ in oil, $305 \mathrm{mg}, 7.26 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 2 h and then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added slowly at $0{ }^{\circ} \mathrm{C}$. The mixture was diluted with aqueous NaHCO_{3} and evaporated in vacuo. The residue was dissolved in CHCl_{3}, washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography with 1:9 AcOEt-hexane to give $\mathbf{1 4}(880 \mathrm{mg}, 95 \%)$ as a colorless syrup: $R_{f}=0.24$ (1:9 AcOEt-hexane); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26\left(3 \mathrm{H}, \mathrm{d}, J_{5,6}=6.3 \mathrm{~Hz}\right.$, $\mathrm{H}_{3}-6$), 1.38, 1.52 (3 H each, $2 \mathrm{~s}, \mathrm{CMe}_{2}$), $3.20\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=9.9, J_{3,4}=7.1 \mathrm{~Hz}, \mathrm{H}-4\right), 3.69(1 \mathrm{H}, \mathrm{dq}, \mathrm{H}-5)$, $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.98\left(1 \mathrm{H}, \mathrm{ddt}, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=13.1, J_{1 \mathrm{~b}^{\prime}, 2^{\prime}}=6.3, J_{1^{\prime} \mathrm{b}, 3^{\prime} E}=J_{1 \mathrm{~b}^{\prime}, 3^{\prime} \mathrm{Z}}=1.3 \mathrm{~Hz}, \mathrm{H}^{\mathrm{b}}-1^{\prime}\right.$ of allyl), 4.16 $\left(1 \mathrm{H}, \mathrm{ddt}, J_{1^{\prime} \mathrm{a}, 2^{\prime}}=5.3, J_{1^{\prime} \mathrm{a}, 3^{\prime} E}=J_{1 \mathrm{a}^{\prime}, 3^{\prime} Z}=1.5 \mathrm{~Hz}, \mathrm{H}^{\mathrm{a}-1} 1^{\prime}\right.$ of allyl $), 4.16\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=5.8, J_{1,2}=0.7 \mathrm{~Hz}, \mathrm{H}-2\right)$, $4.27(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-3), 4.56,4.84\left(1 \mathrm{H}\right.$ each, $\left.2 \mathrm{~d},{ }^{2} J=11.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}-4\right), 5.01(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1), 5.20(1 \mathrm{H}, \mathrm{dq}$, $J_{2^{\prime}, 3^{\prime} E}=10.4, J_{3^{\prime} E, 3^{\prime} Z}=1.8 \mathrm{~Hz}, \mathrm{H}^{E}-3^{\prime}$ of allyl), $5.29\left(1 \mathrm{H}, \mathrm{dq}, J_{2^{\prime}, 3^{\prime} Z}=17.2 \mathrm{~Hz}, \mathrm{H}^{Z}-3^{\prime}\right.$ of allyl), $5.89(1 \mathrm{H}$, dddd, H-2' of allyl), 6.89, 7.29 (2 H each, $2 \mathrm{~d}, J_{o, m}=8.8 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}$). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{6}$: C, 65.91; H, 7.74. Found: C, 66.11; H, 7.59.

4.4. (Z)-1-Propenyl 2,3-O-isopropylidene-4-O-(4-methoxybenzyl)- α-L-rhamnopyranoside (15)

Compound 14 ($880 \mathrm{mg}, 2.41 \mathrm{mmol}$) was dissolved in dry DMSO (10 mL) and potassium tert-butoxide ($770 \mathrm{mg}, 6.85 \mathrm{mmol}$) was added in small portions. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 20 min and then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added at $0{ }^{\circ} \mathrm{C}$. The mixture was diluted with aqueous NaHCO_{3} and evaporated in vacuo. The residue was dissolved in water and extracted with CHCl_{3} three times. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by column chromatography with 1:9 AcOEt-hexane to give $15(837 \mathrm{mg}, 95 \%)$ as a colorless syrup: $R_{f}=0.33$ (1:9 AcOEt-hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24\left(3 \mathrm{H}, \mathrm{d}, J_{5,6}=6.3 \mathrm{~Hz}, \mathrm{H}_{3}-6\right), 1.39,1.53$ (3 H each, $\left.2 \mathrm{~s}, \mathrm{CMe}_{2}\right), 1.56\left(3 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=6.9, J_{1^{\prime}, 3^{\prime}}=1.8 \mathrm{~Hz}, \mathrm{H}-3\right.$ ' of propenyl), $3.21\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=9.9, J_{3,4}=6.9 \mathrm{~Hz}\right.$, $\mathrm{H}-4), 3.68(1 \mathrm{H}, \mathrm{dq}, \mathrm{H}-5), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 4.25\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=5.8, J_{1,2}=0.7 \mathrm{~Hz}, \mathrm{H}-2\right), 4.32(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{H}-3), 4.57\left(1 \mathrm{H}\right.$, quint, $J_{1}, 2^{\prime}=6.3 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ of propenyl), $4.57,4.84\left(1 \mathrm{H}\right.$ each, $\left.2 \mathrm{~d},{ }^{2} J=11.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}-4\right)$, $5.18(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1), 6.14\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{H}-1\right.$ ' of propenyl), $6.88,7.29\left(2 \mathrm{H}\right.$ each, $\left.2 \mathrm{~d}, J_{o, m}=8.7 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{6}$: C, 65.91; H, 7.74. Found: C, 66.16; H, 7.63.

4.5. 4-O-(4-Methoxybenzyl)- α, β-L-rhamnoprranoses (16)

Compound 15 ($830 \mathrm{mg}, 2.28 \mathrm{~mol}$) was dissolved in 70% aqueous $\mathrm{AcOH}(10 \mathrm{~mL})$ and the mixture was stirred at $35^{\circ} \mathrm{C}$ for 24 h . The mixture was concentrated in vacuo and the residue was purified by column chromatography with 1:1 AcOEt-hexane to give an inseparable anomeric mixture ($\alpha: \beta=$ ca. 1:1) of $16(515 \mathrm{mg}, 79 \%)$ as a colorless foam: $R_{f}=0.21(\mathrm{AcOEt}) ;{ }^{1} \mathrm{H}$ NMR $\left[300 \mathrm{MHz}, \mathrm{CDCl}_{3}\left(\mathrm{D}_{2} \mathrm{O}\right.\right.$ exchange)] $\delta 1.19^{*}, 1.24$ (3 H each, 2d, $J_{5,6}=6.3^{*}, 5.6 \mathrm{~Hz}, \mathrm{H}_{3}-6$ of α^{*}, β), $3.25(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4,5$ of β), 3.32 $\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.1 \mathrm{~Hz}, \mathrm{H}-4\right.$ of $\left.\alpha\right), 3.56\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4}=8.7, J_{2,3}=3.5 \mathrm{~Hz}, \mathrm{H}-3\right.$ of $\left.\beta\right), 3.65^{*}, 3.68(3 \mathrm{H}, 2 \mathrm{~s}$, MeO of α^{*}, β), 3.83-3.95 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2,3,5$ of α and $\mathrm{H}-2$ of β), 4.465, 4.47, 4.68, 4.69 (1 H each, $4 \mathrm{~d},{ }^{2} J=$
$10.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}-4$ of $\left.\alpha, \beta\right), 4.62,5.11^{*}\left(1 \mathrm{H}, 2 \mathrm{~d}, J_{1,2}=1.0,1.2^{*} \mathrm{~Hz}, \mathrm{H}-1\right.$ of $\left.\alpha^{*}, \beta\right), 6.77,6.75,7.18,7.19(2 \mathrm{H}$ each, $4 \mathrm{~d}, J_{o, m}=8.7 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}$ of α, β). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6}$: C,59.14; H, 7.09. Found: C, 59.02; H, 7.26.

4.6. 4-O-(4-Methoxybenzyl)-L-rhamnose diethyl dithioacetal (17)

To a solution of $\mathbf{1 6}(95.4 \mathrm{mg}, 0.336 \mathrm{mmol})$ in ethanethiol $(3.6 \mathrm{~mL})$ and $\mathrm{AcOH}(1.2 \mathrm{~mL})$, p-toluenesulfonic acid monohydrate ($6.4 \mathrm{mg}, 0.034 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at ca. $10{ }^{\circ} \mathrm{C}$ for 40 min , diluted with saturated NaHCO_{3}, and concentrated in vacuo. The residue was dissolved in CHCl_{3}, washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography with 1:2 AcOEt-hexane to give $\mathbf{1 7}(95.4 \mathrm{mg}, 73 \%)$ as a colorless prisms: $\mathrm{mp} 47-48{ }^{\circ} \mathrm{C}$ (from AcOEt-hexane); $[\alpha]_{\mathrm{D}}{ }^{26}-20.5^{\circ}\left(c=2.95, \mathrm{CHCl}_{3}\right) ; R_{f}=0.41$ (1:1 AcOEt-hexane). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27,1.28$ (3 H each, $2 \mathrm{t},{ }^{3} J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}$), 1.29 $\left(3 \mathrm{H}, \mathrm{d}, J_{5,6}=6.6 \mathrm{~Hz}, \mathrm{H}_{3}-6\right), 2.48\left(3 \mathrm{H}, \mathrm{br}\right.$ s, HO-2,3,5), 2.61, $2.72\left(2 \mathrm{H}\right.$ each, $2 \mathrm{q}, \mathrm{CH}_{2} \mathrm{~S}$), 3.63 ($1 \mathrm{H}, \mathrm{dd}, J_{4,5}$ $\left.=4.4, J_{3,4}=1.5 \mathrm{~Hz}, \mathrm{H}-4\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.86\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=8.8, J_{1,2}=2.4 \mathrm{~Hz}, \mathrm{H}-2\right), 4.07(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{H}-3), 4.14(1 \mathrm{H}, \mathrm{qd}, \mathrm{H}-5), 4.25(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1), 4.59,4.67$ (1 H each, $2 \mathrm{~d},{ }^{2} J=11.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}-4$), $6.88,7.28$ (2 H each, $2 \mathrm{~d}, J_{o, m}=8.8 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}$). ${ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.60\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}\right), 14.71$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}\right), 19.22(\mathrm{C}-6), 25.73\left(\mathrm{CH}_{2} \mathrm{~S}\right), 26.16\left(\mathrm{CH}_{2} \mathrm{~S}\right), 54.56(\mathrm{C}-1), 55.27(\mathrm{MeO}), 68.59(\mathrm{C}-5), 70.75$ (C-3), $72.90\left(\mathrm{CH}_{2} \mathrm{O}\right), 72.91(\mathrm{C}-2), 79.16(\mathrm{C}-4), 113.90(\mathrm{C}(m)$ of PMB$), 129.87(\mathrm{C}(o)$ of PMB$), 129.96$ (C (ipso) of PMB), $159.49\left(\mathrm{C}(p)\right.$ of PMB). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~S}_{2}$: C, $55.36 ; \mathrm{H}, 7.42$. Found: C, 55.48; H, 7.48.

4.7. 1,6-Dideoxy-1,1-bis(ethylsulfonyl)-4-O-(4-methoxybenzyl)-L-mannitol (18)

To a solution of $\mathbf{1 7}(199 \mathrm{mg}, 0.510 \mathrm{mmol})$ in dry dioxane $(4 \mathrm{~mL})$ was added m CPBA ($572 \mathrm{mg}, 2.55$ mmol). The mixture was stirred at rt for 1 h and then evaporated in vacuo. The residue was diluted with CHCl_{3}, washed with cold saturated NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography with $1: 1$ AcOEt-hexane to give $\mathbf{1 8}(179 \mathrm{mg}, 77 \%)$ as colorless needles: mp $115-116^{\circ} \mathrm{C}$ (from AcOEt-hexane); $[\alpha]_{\mathrm{D}}{ }^{27}-5.43^{\circ}\left(c=2.30, \mathrm{CHCl}_{3}\right) ; R_{f}=0.20(1: 1$ AcOEt-hexane). ${ }^{1} \mathrm{H}$ NMR (600 MHz CDCl 3) : $\delta=1.31\left(3 \mathrm{H}, \mathrm{d}, J_{5,6}=6.4 \mathrm{~Hz}, \mathrm{H}_{3}-6\right), 1.42,1.44$ (3 H each, $2 \mathrm{t},{ }^{3} J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}$), $2.37(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HO}-2,3,5), 3.38,3.57$ (1 H each, $2 \mathrm{dq},{ }^{2} J=14.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~S}$), 3.39 , $3.62\left(1 \mathrm{H}\right.$ each, $\left.2 \mathrm{dq},{ }^{2} J=14.0 \mathrm{~Hz}, \mathrm{CH}^{\prime}{ }_{2} \mathrm{~S}\right), 3.53\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=5.1, J_{3,4}=1.7 \mathrm{~Hz}, \mathrm{H}-4\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO})$, $4.19(1 \mathrm{H}, \mathrm{qd}, \mathrm{H}-5), 4.32\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=9.5 \mathrm{~Hz}, \mathrm{H}-3\right), 4.53,4.68\left(1 \mathrm{H}\right.$ each, $\left.2 \mathrm{~d},{ }^{2} J=11.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}-4\right)$, $4.66\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2}=1.0 \mathrm{~Hz}, \mathrm{H}-2\right), 4.83(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1), 6.90,7.30\left(2 \mathrm{H}\right.$ each, $\left.2 \mathrm{~d}, J_{o, m}=8.6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.33\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}\right)$, $5.59\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}\right), 19.60(\mathrm{C}-6), 48.34\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}\right), 51.18$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}\right), 55.30(\mathrm{MeO}), 68.19(\mathrm{C}-5), 69.92(\mathrm{C}-3), 70.22(\mathrm{C}-2), 72.80\left(\mathrm{CH}_{2} \mathrm{O}\right), 77.70(\mathrm{C}-1), 77.96(\mathrm{C}-4)$, $114.10(\mathrm{C}(m)$ of PMB), $129.22(\mathrm{C}(o)$ of PMB), 130.29 ($\mathrm{C}($ ipso $)$ of PMB), 159.71 (C (p) of PMB). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{9} \mathrm{~S}_{2}$: C, 47.56; H, 6.65. Found: C, 47.68; H, 6.72.

4.8. 5-Deoxy-3-O-(4-methoxybenzyl)- α, β-L-arabinofuranoses (19) ${ }^{14}$

Compound 18 ($153 \mathrm{mg}, 0.337 \mathrm{mmol}$) was dissolved in 10% aqueous ammonia (3 mL). The mixture was stirred at rt for 10 h and then concentrated in vacuo. The residue was purified by column chromatography with 1:2 AcOEt-hexane to give an inseparable mixture (40:60) of α - and β-anomers of $19(70.1 \mathrm{mg}, 82 \%)$ as a colorless syrup: $R_{f}=0.15(1: 1 \mathrm{AcOEt}-\mathrm{hexane}), 0.54(\mathrm{AcOEt}) .{ }^{1} \mathrm{H}$ NMR spectra were in accord with previously published data. ${ }^{14}$

4.9. 5-Deoxy-3-O-(4-methoxybenzyl)- α, β-L-erythro-pentos-2-uloses (20) ${ }^{14}$

Compound 19 ($282 \mathrm{mg}, 1.11 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(6 \mathrm{~mL})$ and water (3 mL). The solution was refluxed and then cupric acetate hydrate $(1.44 \mathrm{~g}, 7.23 \mathrm{mmol})$ was added. The mixture was refluxed for 1 h and then precipitates were filtered off and washed with ethyl acetate. The filtrate was evaporated in vacuo and the residue was separated by column chromatography with 1:3 AcOEt-hexane to give 20 ($142 \mathrm{mg}, 51 \%$ yield, lit, ${ }^{14} 46 \%$) as a colorless syrup: $R_{f}=0.25-0.33$ ($1: 1 \mathrm{AcOEt}$-hexane). From the slower-eluting fraction, compound 17 ($55.2 \mathrm{mg}, 20 \%$) was recovered.

4.10. $\quad N^{2}$-(N, N-Dimethylaminomethylene)-1'-O-(4-methoxybenzyl)-3-[2-(4-nitrophenyl)ethyl]biopterin (23) ${ }^{14}$

By use of the same procedures described in the literature, ${ }^{14}$ compound $\mathbf{2 0}$ was converted into $\mathbf{2 3}$ in five steps: $R_{f}=0.60\left(1: 9 \mathrm{MeOH}-\mathrm{CHCl}_{3}\right)$.
4.11. $\quad N^{2}$-(N, N-Dimethylaminomethylene)-1'-O-(4-methoxybenzyl)-3-[2-(4-nitrophenyl)ethyl]-2'-O-(2,3,4,6-tetra-O-benzoyl- β-D-glucopyranosyl)biopterin (24)

To a solution of $23(56.0 \mathrm{mg}, 0.100 \mathrm{mmol})$, glycosyl bromide $5(200 \mathrm{mg}, 0.303 \mathrm{mmol})$ and TMU $(0.012 \mathrm{~mL}, 0.10 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added silver triflate $(56.0 \mathrm{mg}, 0.218 \mathrm{mmol})$. The mixture was stirred at rt for 3 h in the dark, diluted with CHCl_{3}, and filtered through Celite. The filtrate was washed with aqueous NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography with $2: 1$ AcOEt-hexane to give $24(85.6 \mathrm{mg}, 75 \%)$ as a pale yellow foam: R_{f} $=0.38$ (AcOEt); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$), see Table 1. Anal. Calcd for $\mathrm{C}_{62} \mathrm{H}_{57} \mathrm{~N}_{7} \mathrm{O}_{15}$: C, $65.31 ; \mathrm{H}$, 5.04. Found: C, 65.18; H, 4.96.
4.12. $\quad N^{2}$-(N, N-Dimethylaminomethylene)-3-[2-(4-nitrophenyl)ethyl]-2'-O-(2,3,4,6-terta- O -benzoyl- β-D-glucopyranosyl)biopterin (6) ${ }^{13}$

To a solution of $22(54.4 \mathrm{mg}, 0.0477 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ containing water $(0.10 \mathrm{~mL})$ was added $\operatorname{DDQ}(16.2 \mathrm{mg}, 0.0716 \mathrm{mmol})$. The mixture was stirred at rt for 2 h and then evaporated in vacuo. The residue was purified by column chromatography with $1: 99 \mathrm{MeOH}-\mathrm{CHCl}_{3}$ to give $6(40.6 \mathrm{mg}, 83 \%)$ as a pale yellow syrup: $R_{f}=0.63\left(1: 9 \mathrm{MeOH}-\mathrm{CHCl}_{3}\right) ;[\alpha]_{\mathrm{D}}{ }^{20}+37.1^{\circ}\left(c 2.17, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR spectra were in accord with previously published data. ${ }^{13}$ Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{14}$: C, 63.59; H, 4.84. Found: C, 63.44; H, 4.99.

4.13. 2'-O-(β-D-Glucopyranosyl)biopterin (2b)

4.13.1. From 6. Compound $6(54.1 \mathrm{mg}, 0.0530 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ and a 28% methanolic NaOMe ($0.03 \mathrm{~mL}, 0.15 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 1 h and neutralized with Amberlite IR-120(H^{+}). The resin was filtered off and the filtrate was evaporated in vacuo. The residue was dissolved in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ and 28% aqueous ammonia solution (3.0 mL) was added. The mixture was stirred at rt for 12 h and evaporated in vacuo. The residue was dissolved in DMF (1.0 mL) and DBU ($0.050 \mathrm{~mL}, 0.32 \mathrm{mmol}$) was added. The mixture was stirred at rt for 12 h , diluted with water (3.0 mL), and neutralized with Amberlite FPC3500 $\left(\mathrm{H}^{+}\right)$. The resin was filtered off and the filtrate was evaporated in vacuo. The residue was washed with CHCl_{3} and dried under reduced pressure to give $\mathbf{2 b}(18.7 \mathrm{mg}, 89 \%$ from $\mathbf{6})$ as a yellow powder.
4.13.2. From 25b. Compound 25b ($26.0 \mathrm{mg}, 0.0399 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ and 28% aqueous ammonia solution $(1.0 \mathrm{~mL})$ was added. The mixture was stirred at rt for 12 h and evaporated in vacuo. The residue was washed with CHCl_{3} to give 2b ($15.6 \mathrm{mg}, 98 \%$): $R_{f}=0.23$ (5:3:1 i-PrOH-AcOEt- $\mathrm{H}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) and ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$ and DMSO- d_{6}), see Table 2. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{8}$: C, 45.11; H, 5.30. Found: C, 44.89; H, 5.53.

4.14. Di- $N^{2}: \mathbf{1}^{\prime}$ - O-acetyl-2'-O-(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)biopterin (25b)

Compound $\mathbf{1 b}$ ($18.7 \mathrm{mg}, 0.0468 \mathrm{mmol}$) was dissolved in pyridine (2.0 mL) and then acetic anhydride $(1.0 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 12 h and evaporated in vacuo. The residue was purified by column chromatography with AcOEt to give $\mathbf{2 5 b}(28.0 \mathrm{mg}, 92 \%)$ as a pale yellow syrup: $R_{f}=0.52\left(1: 9 \mathrm{MeOH}: \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, see Table 1. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{14}$: C, 49.77; H, 5.10. Found: C, 49.92; H, 5.02.

4.15. Methyl 2,3,4,6-tetra- \boldsymbol{O}-acetyl-1-thio- $\boldsymbol{\beta}$-D-glucopyranoside (27) ${ }^{27}$

The following modification of the literature procedures was made. ${ }^{27}$ To a solution of $\mathbf{2 6}(5.41 \mathrm{~g}$, 13.9 mmol) in dry acetonitrile (28 mL), were added thiourea ($1.17 \mathrm{~g}, 15.4 \mathrm{mmol}$) and BF_{3}-etherate (3.7 $\mathrm{mL}, 29.1 \mathrm{mmol})$. The mixture was refluxed for 20 min and then TEA ($23.2 \mathrm{~mL}, 166 \mathrm{mmol}$) and methyl
iodide ($8.6 \mathrm{~mL}, 139 \mathrm{mmol}$) were slowly added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 2 h and concentrated in vacuo. The residue was dissolved in CHCl_{3} and then the mixture was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography with $1: 5$ AcOEt-hexane to give 27 [$4.66 \mathrm{~g}, 89 \%$ (lit. ${ }^{27} 57 \%$ yield)] as colorless crystals: $\mathrm{mp} 89-90{ }^{\circ} \mathrm{C}$ (from AcOEt-hexane); $R_{f}=0.26\left(1: 2 \mathrm{AcOEt}\right.$-hexane); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.01,2.03,2.07,2.09(3 \mathrm{H}$ each, 4s, AcO-2,3,4,6), 2.17 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$), $3.73\left(1 \mathrm{H}\right.$, ddd, $\left.J_{4,5}=10.0, J_{5,6 \mathrm{a}}=4.9, J_{5,6 \mathrm{~b}}=2.4 \mathrm{~Hz}, \mathrm{H}-5\right), 4.15$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.5 \mathrm{~Hz}, \mathrm{H}^{\mathrm{b}}-6\right), 4.25\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}^{\mathrm{a}}-6\right), 4.39\left(1 \mathrm{H}, \mathrm{d}, J_{1,2}=10.0 \mathrm{~Hz}, \mathrm{H}-1\right), 5.07\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4}=\right.$ $9.5 \mathrm{~Hz}, \mathrm{H}-4), 5.08\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=9.5 \mathrm{~Hz}, \mathrm{H}-2\right), 5.23(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-3)$.

4.16. Methyl 4,6-O-isopropylidene-1-thio- β-D-glucopyranoside (28)

Compound $27(607 \mathrm{mg}, 1.60 \mathrm{mmol})$ was dissolved in dry MeOH $(3.5 \mathrm{~mL})$ and then a 28% methanoic sodium methoxide ($0.87 \mathrm{~mL}, 4.33 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 2 h and neutralized with Amberlite $\operatorname{IR}-120\left(\mathrm{H}^{+}\right)$. The resin was filtered off and the filtrate was evaporated in vacuo. The residue was dissolved in dry DMF $(5.0 \mathrm{~mL})$ and then 2,2-dimethoxypropane $(0.79 \mathrm{~mL}, 6.42$ mmol) and p-toluenesulfonic acid monohydrate ($24 \mathrm{mg}, 0.13 \mathrm{mmol}$) were added. The mixture was stirred at rt for 12 h and then pyridine $(0.5 \mathrm{~mL})$ was added. The mixture was concentrated in vacuo and the residue was purified by column chromatography with 1:2 AcOEt-hexane to give $\mathbf{2 8}(364 \mathrm{mg}, 90 \%)$ as a colorless syrup: $R_{f}=0.16(1: 1 \mathrm{AcOEt}-$ hexane $) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.43,1.50(3 \mathrm{H}$ each, 2 s , $\mathrm{Me}_{2} \mathrm{C}$), $2.21(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}), 3.00,3.25(1 \mathrm{H}$ each, $2 \mathrm{br} \mathrm{s}, \mathrm{HO}-2,3), 3.32\left(1 \mathrm{H}, \mathrm{ddd}, J_{5,6 \mathrm{~b}}=10.3, J_{4,5}=9.6, J_{5,6 \mathrm{a}}\right.$ $=5.4 \mathrm{~Hz}, \mathrm{H}-5), 3.47\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2}=9.8, J_{2,3}=8.3 \mathrm{~Hz}, \mathrm{H}-2\right), 3.57\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=9.3 \mathrm{~Hz}, \mathrm{H}-4\right), 3.67(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{H}-3), 3.75\left(1 \mathrm{H}, \mathrm{t}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.9 \mathrm{~Hz}, \mathrm{H}^{\mathrm{b}}-6\right), 3.93\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}^{\mathrm{a}}-6\right), 4.32(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 47.98 ; \mathrm{H}, 7.25$. Found: C, 48.11; H, 7.02.

4.17. Methyl 4,6-O-isopropylidene-2,3-di-O-(4-methoxybenzyl)-1-thio- β-D-glucopyranoside (29)

Compound 28 ($778 \mathrm{mg}, 3.11 \mathrm{mmol}$), p-methoxybenzyl chloride ($2.10 \mathrm{~mL}, 15.5 \mathrm{mmol}$) and tetrabutylammonium iodide ($344 \mathrm{mg}, 0.93 \mathrm{mmol}$) were dissolved in dry DMF $(30 \mathrm{~mL})$ and then sodium hydride (60% in oil, $621 \mathrm{mg}, 15.5 \mathrm{mmol}$) was added with stirring at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 10 h , diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and evaporated in vacuo. The residue was dissolved in CHCl_{3}, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography with 1:6 AcOEt-hexane to give $29\left(1.25 \mathrm{~g}, 82 \%\right.$ yield) as colorless prisms: mp $80-81^{\circ} \mathrm{C}$ (from AcOEt-hexane); $[\alpha]_{\mathrm{D}}{ }^{26}+4.25^{\circ}\left(c=1.44, \mathrm{CHCl}_{3}\right) ; R_{f}=0.34$ (1:4 AcOEt-hexane); ${ }^{1} \mathrm{H}$ NMR $(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.43,1.51\left(3 \mathrm{H}\right.$ each, $2 \mathrm{~s}, \mathrm{Me}_{2} \mathrm{C}$), $2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}), 3.26\left(1 \mathrm{H}, \mathrm{dt}, J_{5,6 \mathrm{~b}}=10.2, J_{4,5}=9.7\right.$, $\left.J_{5,6 \mathrm{a}}=5.4 \mathrm{~Hz}, \mathrm{H}-5\right), 3.38\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2}=9.8, J_{2,3}=8.5 \mathrm{~Hz}, \mathrm{H}-2\right), 3.60\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=9.1 \mathrm{~Hz}, \mathrm{H}-3\right), 3.69(1 \mathrm{H}$, $\mathrm{t}, \mathrm{H}-4), 3.75\left(1 \mathrm{H}, \mathrm{t}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.0 \mathrm{~Hz}, \mathrm{H}^{\mathrm{b}}-6\right), 3.80(6 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.93\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}^{\mathrm{a}}-6\right), 4.37(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1)$, $4.69,4.72^{*}, 4.74^{*}, 4.80\left(1 \mathrm{H}\right.$ each, $\left.4 \mathrm{~d},{ }^{2} J=11.0,10.0^{*} \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}-2,3\right), 6.855,6.86\left(1 \mathrm{H}\right.$ each, $2 \mathrm{~d}, J_{o, m}=8.6$ Hz, m of PMB), 7.28, 7.30 (2 H each, 2d, o of PMB). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 63.65 ; \mathrm{H}, 6.99$.

Found: C, 63.81; H, 7.01.

4.18. Methyl 2,3-di- O-(4-methoxybenzyl)-1-thio- β-D-glucopyranoside (30)

To a solution of $\mathbf{2 9}(240 \mathrm{mg}, 0.489 \mathrm{mmol})$ in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ was added 70% aqueous $\mathrm{AcOH}(3.0$ mL). The mixture was stirred at rt for 10 h and evaporated in vacuo. The residue was purified by column chromatography with 1:1 AcOEt-hexane to give $\mathbf{3 0}(213 \mathrm{mg}, 97 \%$ yield) as colorless needles: mp $45-46{ }^{\circ} \mathrm{C}$ (from AcOEt-hexane); $[\alpha]_{\mathrm{D}}{ }^{26}-16.2^{\circ}\left(c=1.81, \mathrm{CHCl}_{3}\right) ; R_{f}=0.14$ (1:1 AcOEt-hexane); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.97(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HO}-4,6), 2.24(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}), 3.33\left(1 \mathrm{H}, \mathrm{ddd}, J_{4,5}=9.4, J_{5,6 \mathrm{~b}}=5.2, J_{5,6 \mathrm{a}}\right.$ $=3.4 \mathrm{~Hz}, \mathrm{H}-5), 3.38\left(1 \mathrm{H}, \mathrm{t}, J_{1,2}=9.5, J_{2,3}=8.8 \mathrm{~Hz}, \mathrm{H}-2\right), 3.45\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=8.9 \mathrm{~Hz}, \mathrm{H}-3\right), 3.53(1 \mathrm{H}, \mathrm{t}$, $\mathrm{H}-4), 3.74\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.9 \mathrm{~Hz}, \mathrm{H}^{\mathrm{b}}-6\right), 3.80(6 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.87\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}^{\mathrm{a}}-6\right), 4.39(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1)$, $4.64,4.70^{*}, 4.86^{*}, 4.91$ (1 H each, $4 \mathrm{~d},{ }^{2} J=11.3,9.8^{*} \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}-2,3$), $6.88,6.89\left(2 \mathrm{H}\right.$ each, $2 \mathrm{~d}, J_{o, m}=8.5$ Hz, m of PMB), 7.26, 7.36 (2 H each, 2d, o of PMB). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 61.31 ; \mathrm{H}, 6.71$. Found: C, 61.10; H, 6.93.

4.19. Methyl 4,6-di- \boldsymbol{O}-acetyl-2,3-di- \boldsymbol{O}-(4-methoxybenzyl)-1-thio- β-D-glucopyranoside (31)

Compound 30 ($295 \mathrm{mg}, 0.655 \mathrm{mmol}$) was dissolved in pyridine (3.0 mL) and then acetic anhydride $(0.62 \mathrm{~mL}, 6.56 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 12 h and evaporated in vacuo. The residue was purified by column chromatography with 1:3 AcOEt-hexane to give $\mathbf{3 1}$ ($342 \mathrm{mg}, 98 \%$ yield) as colorless needles: $\mathrm{mp} 82-83{ }^{\circ} \mathrm{C}$ (from AcOEt-hexane); $[\alpha]_{\mathrm{D}}{ }^{26}-0.69^{\circ}\left(c=1.21, \mathrm{CHCl}_{3}\right) ; R_{f}=$ 0.22 (1:2 AcOEt-hexane); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.94,2.06(3 \mathrm{H}$ each, $2 \mathrm{~s}, \mathrm{AcO}-4,6), 2.22(1 \mathrm{H}, \mathrm{s}$, SMe), $3.48\left(1 \mathrm{H}, \mathrm{t}, J_{1,2}=9.8, J_{2,3}=8.8 \mathrm{~Hz}, \mathrm{H}-2\right), 3.54\left(1 \mathrm{H}, \mathrm{ddd}, J_{4,5}=9.8, J_{5,6 \mathrm{a}}=5.2, J_{5,6 \mathrm{~b}}=2.4 \mathrm{~Hz}, \mathrm{H}-5\right)$, $3.61\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=9.5 \mathrm{~Hz}, \mathrm{H}-3\right), 3.80(6 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 4.08\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.2 \mathrm{~Hz}, \mathrm{H}^{\mathrm{b}}-6\right), 4.20(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{H}^{\mathrm{a}}-6\right), 4.35(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1), 4.59,4.67^{*}, 4.77,4.81^{*}\left(1 \mathrm{H}\right.$ each, $\left.4 \mathrm{~d},{ }^{2} J=11.0,10.1^{*} \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}-2,3\right), 5.02(1 \mathrm{H}, \mathrm{t}$, $\mathrm{H}-4), 6.855,6.86$ (2 H each, $2 \mathrm{~d}, J_{o, m}=8.8 \mathrm{~Hz}, m$ of PMB), 7.18, 7.30 (2 H each, 2d, o of PMB). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{9} \mathrm{~S}: \mathrm{C}, 60.66$; H, 6.41. Found: C, 60.58 ; H, 6.55 .

4.20. 4,6-Di-O-acetyl-2,3-di-O-(4-methoxybenzyl)- α-D-glucopyranosyl bromide (32)

Compound $31(650 \mathrm{mg}, 1.22 \mathrm{mmol})$ and 2,6-lutidine $(0.40 \mathrm{~mL}, 3.41 \mathrm{mmol})$ were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ and then bromine $(0.15 \mathrm{~mL}, 2.92 \mathrm{mmol})$ was added with stirring at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 2 h and then cyclohexene $(0.30 \mathrm{~mL}, 2.96 \mathrm{mmol})$ was added. The mixture was concentrated in vacuo and the residue was dissolved in AcOEt. The insoluble matter was filtered off and the filtrate was evaporated in vacuo. The residue was purified by column chromatography with 1:4 AcOEt-hexane to give 32 ($623 \mathrm{mg}, 90 \%$) as a colorless syrup: $R_{f}=0.42$ ($1: 2 \mathrm{AcOEt}$-hexane); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.95,2.05$ (3 H each, $2 \mathrm{~s}, \mathrm{AcO}-4,6$), $3.53\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=9.2, J_{1,2}=3.9 \mathrm{~Hz}, \mathrm{H}-2\right.$), 3.80 , $3.81(3 \mathrm{H}$ each, $2 \mathrm{~s}, \mathrm{MeO}), 3.92\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=9.5 \mathrm{~Hz}, \mathrm{H}-3\right), 4.02\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.5, J_{5,6 \mathrm{~b}}=2.1 \mathrm{~Hz}, \mathrm{H}^{\mathrm{b}}-6\right)$,
$4.14\left(1 \mathrm{H}\right.$, ddd, $\left.J_{4,5}=10.4, J_{5,6 \mathrm{a}}=4.6 \mathrm{~Hz}, \mathrm{H}-5\right), 4.26\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}^{\mathrm{a}}-6\right), 4.58^{*}, 4.62,4.67,4.80^{*}(1 \mathrm{H}$ each, 4 d , $\left.{ }^{2} J=11.6,11.3^{*} \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}-2,3\right), 5.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-4), 6.26(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1), 6.86,6.88\left(2 \mathrm{H}\right.$ each, $2 \mathrm{~d}, J_{o, m}=8.6$ Hz, m of PMB), 7.19, 7.29 (2H each, 2d, o of PMB). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{BrO}_{9}$: C, 55.03; H, 5.51. Found: C, 54.91; H, 5.74.
4.21. $\quad N^{2}$-(N, N-Dimethylaminomethylene)-1'-O-(4-methoxybenzyl)-3-[2-(4-nitrophenyl)ethyl]-2'-O-[4,6-di- O-acetyl-2,3-di- O-(4-metoxybenzyl)- α-D-glucopyranosyl]biopterin (33a) and its β-anomer 33b

To a solution of the biopterin derivative (23) ($30.0 \mathrm{mg}, 0.0534 \mathrm{mmol}$), the D-glucopyranosyl bromide (32) ($122 \mathrm{mg}, 0.21 \mathrm{mmol}$) and TMU ($0.0064 \mathrm{~mL}, 0.054 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$, was added silver triflate $(28.0 \mathrm{mg}, 0.109 \mathrm{mmol})$. The mixture was stirred at rt for 3 h and the suspension was filtered through Celite. The residue was washed with CHCl_{3} and the filtrate was treated with saturated NaHCO_{3}. The mixture was extracted with CHCl_{3} three times. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was purified by column chromatography with $1: 1$ AcOEt-hexane to give an inseparable anomeric mixture ($85: 15$) of $\mathbf{3 3 a}$ and $\mathbf{3 3 b}(37.0 \mathrm{mg}, 66 \%)$ as a pale yellow syrup: $R_{f}=0.50$ (AcOEt). From the slower-eluting fraction, compound 23 ($7.2 \mathrm{mg}, 24 \%$ recovery) was recovered: $R_{f}=0.12(\mathrm{AcOEt})$.

33a: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$), see Table 1.

4.22. 1'-O-Acetyl- N^{2}-(N, N-dimethylaminomethylene)-3-[2-(4-nitrophenyl)ethyl]-2'-O-(2,3,4,6-tetra- \boldsymbol{O}-acetyl- α-D-glucopyranosyl)biopterin (34a) and its $\boldsymbol{\beta}$-anomer 34b

To a solution of $\mathbf{3 3 a}, \mathbf{b}(59.0 \mathrm{mg}, 0.0563 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ containing water $(0.2 \mathrm{~mL})$ was added DDQ ($154 \mathrm{mg}, 0.68 \mathrm{mmol}$). The mixture was stirred at rt for 2 h and then diluted with CHCl_{3}. The mixture was washed with aqueous NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was dissolved in dry pyridine (2.0 mL) and then acetic anhydride ($0.27 \mathrm{~mL}, 2.82 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 12 h and then evaporated in vacuo. The residue was purified by column chromatography with 2:1 AcOEt-hexane to give $\mathbf{3 4 a}(35.2 \mathrm{mg}, 51 \%$ from $\mathbf{2 3}$) and $\mathbf{3 4 b}(6.2 \mathrm{mg}$, 9%).

34a: Pale yellow syrup; $R_{f}=0.27(\mathrm{AcOEt}) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, see Table 1. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{15}$: C, 53.13; H, 5.33. Found: C, $53.01 ; \mathrm{H}, 5.49$.

34b: Pale yellow syrup; $R_{f}=0.30(\mathrm{AcOEt}) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, see Table 1.

4.23. $\quad 2$ - O-(α-D-Glucopyranosyl)biopterin (2a)

4.23.1. From 34a. Compound 34a ($30.2 \mathrm{mg}, 0.0371 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ and 28% aqueous ammonia solution (2.0 mL) was added. The mixture was stirred at room temperature for 12 h
and then evaporated in vacuo. The residue was dissolved in DMF (2.0 mL) and DBU $(0.027 \mathrm{~mL}, 0.18$ mmol) was added. The mixture was stirred at rt for 12 h and neutralized with Amberlite FPC3500 $\left(\mathrm{H}^{+}\right)$. The resin was filtered off and the filtrate was evaporated in vacuo. The residue was washed with CHCl_{3} and dried under reduced pressure to give $\mathbf{2 a}(13.4 \mathrm{mg}, 90 \%)$.
4.23.2. From 25a. Compound 25a ($18.0 \mathrm{mg}, 0.0276 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ and 28% aqueous ammonia solution (1.0 mL) was added. The mixture was stirred at rt for 12 h and then evaporated in vacuo. The residue was washed with CHCl_{3} and dried under reduced pressure to give $\mathbf{2 a}$ ($10.4 \mathrm{mg}, 94 \%$) as a pale yellow solid: $R_{f}=0.11$ ($\left.5: 3: 12-\mathrm{PrOH}-\mathrm{AcOEt}-\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) and ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$ and DMSO- d_{6}), see Table 2. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{8}$: C, 45.11; H, 5.30. Found: C, 45.01; H, 5.50.

4.24. Di-N': $\mathbf{1}^{\prime}$-O-Acetyl-2'-O-(2,3,4,6-tetra-O-acetyl- α-D-glucopyranosyl)biopterin (25a)

Compound 2a ($13.4 \mathrm{mg}, 0.0336 \mathrm{mmol}$) was dissolved in dry DMF (1.0 mL) and dry pyridine (1.0 $\mathrm{mL})$ and then acetic anhydride ($0.17 \mathrm{~mL}, 1.84 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 12 h and then evaporated in vacuo. The residue was purified by column chromatography with $4: 1$ AcOEt-hexane to give $\mathbf{2 5 a}(19.6 \mathrm{mg}, 90 \%)$ as a yellow syrup: $R_{f}=0.29(\mathrm{AcOEt}) ;{ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}), see Table 1. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{14}$: C, 49.77; H, 5.10. Found: C, 49.99; H, 5.29.

Acknowledgements

We are grateful to the SC-NMR Laboratory of Okayama University for the NMR measurements and to WESCO Scientific Promotion Foundation (to T. H.) which partially supported this work.

References and notes

1. Forrest, H. S.; Van Baalen, C.; Myers, J. Arch. Biochem. Biophys. 1958, 78, 95.
2. Matsunaga, T.; Burgess, J. G.; Yamada, N.; Komatsu, K.; Yoshida, S.; Wachi, Y. Appl. Microbiol. Biotechnol. 1993, 39, 250.
3. Choi, Y. K.; Hwang, Y. K.; Kang, Y. H.; Park, Y. S. Pteridines 2001, 12, 121.
4. Noguchi, Y.; Ishii, A.; Matsushima, A.; Haishi, D.; Yasumuro, K.; Moriguchi, T.; Wada, T.; Kodera, Y.; Hiroto, M.; Nishihara, H.; Sekine, M.; Inada, Y. Mar. Biotechnol. 1999, 1, 207.
5. Cha, K. W.; Pfleiderer, W.; Yim, J. J. Helv. Chim. Acta 1995, 78, 600.
6. (a) Ikawa, M.; Sasner, J. J.; Haney, J. F.; Foxall, T. L. Phytochemistry 1995, 38, 1229; (b) Cho, S.-H.; Na, J.-U.; Youn H.; Hwang, C.-S.; Lee, C.-H.; Kang, S.-O. Biochim. Biophys. Acta 1998,

1379, 53.
7. (a) Suzuki, A.; Goto, M. J. Biochem. 1968, 63, 798; (b) Lin, X.; White, R. H. J. Bacteriol 1988, 170, 1396.
8. (a) Lee, H. W.; Oh, C. H.; Geyer, A.; Pfleiderer, W.; Park, Y. S. Biochim. Biophys. Acta 1999, 1410, 61; (b) Hatfield, D. J.; Van Baalen, C.; Forrest, H. S. Plant Physiol. 1961, 36, 240.
9. (a) Kaufman, S.; Fisher, D. B. In Molecular Mechanisms of Oxygen Activation; Hayaishi, O., Ed.; Academic Press: New York, 1974; pp 285-369; (b) Kaufman, S; Kaufman, E. E. In Folates and Pterins; Blakley, R.; Benkovic, S. J., Ed.; J. Wiley \& Sons: New York, 1985; Vol. 2, pp 251-352; (c) Fitzpatrick, P. F. Annu. Rev. Biochem. 1999, 68, 355.
10. (a) Crane, B. R.; Arvai, A. S.; Ghosh, D. K.; Wu, C. Q.; Getzoff, E. D.; Stuehr, D. J.; Tainer, J. A. Science 1998, 5359, 2121; (b) Kwon, N. S.; Nathan, C. F.; Stuehr, D. J. J. Biol. Chem. 1989, 264, 20496; (c) Marletta, M. A. Cell 1994, 78, 927.
11. Wachi, Y.; Yoshida, S.; Komatsu, K.; and Matsunaga, T. Jpn. Patent 05,286,989, 1993 (Chem. Abstr., 1994, 120, 161782t).
12. Saito, T.; Ishikawa, H.; Hada, Y.; Fukui, K.; Kodera, Y.; Matsushima, A.; Inada, Y. Dyes Pigments 2003, 56, 203.
13. Hanaya, T.; Soranaka, K.; Harada, K.; Yamaguchi, H.; Suzuki, R.; Endo, Y.; Yamamoto, H.; Pfleiderer, W. Heterocycles 2006, 67, 299.
14. Hanaya, T.; Baba, H.; Toyota, H.; Yamamoto, H. Tetrahedron 2008, 64, 2090.
15. Ness, R. K.; Fletcher, Jr., H. G.; Hudson, C. S. J. Am. Chem. Soc. 1950, 72, 2200.
16. A part of the results have been reported as preliminary communications: (a) Hanaya, T.; Toyota, H.; Yamamoto, H. Synlett 2006, 2075; (b) Hanaya, T.; Baba, H.; Yamamoto, H. Heterocycles 2009, 77, 747.
17. For an alternative route of preparation biopterin derivative (9) from D-xylose, see ref.14.
18. Hanaya, T.; Torigoe, K.; Soranaka, K.; Yamamoto, H.; Yao, Q.; Pfleiderer, W. Pteridines 1995, 6, 1.
19. Gigg, R.; Payne, S.; Conant, R. J. Carbohydr. Res. 1983, 2, 207.
20. Acidic hydrolysis of methyl $2,3-O$-isopropylidene-4-O-PMB- α-L-rhamnopyranoside in an attempt to obtain 4-O-PMB-L-rhamnose (16) resulted in a preferential removal of the PMB group rather than hydrolysis of methyl glycoside. Therefore we employed 1-propenyl glycoside which is cleavable under weaker acidic conditions.
21. Hough, L.; Taylor, T. J. J. Chem. Soc. 1955, 3544.
22. Weinstock, J. U.S. Patent $3,505,329$, 1970; Chem. Abstr. 1970, 72, 132787h. (b) Taylor, E. C.; Jacobi, P. A. J. Am. Chem. Soc. 1976, 98, 2301-2307.
23. Lemieux, R. U.; Hendriks, K. B.; Stick, R. V.; James, K. J. Am. Chem. Soc. 1975, 97, 4056.
24. Hanessian, S.; Banoub, J. Methods Carbohydr. Chem. 1980, 8, 247.
25. Wulff G.; Röhle, G. Angew. Chem., Int. Ed. Engl. 1974, 13, 157, and references cited therein.
26. Wolfrom M. L.; Thompson, A. Methods Carbohydr. Chem. 1963, 2, 211.
27. Ibatullin, F. M.; Shabalin, K. A.; Jänis, J. V.; Shavva, A. G. Tetrahedron Lett. 2003, 44, 7961.
28. Lönn, H. Carbohydr. Res. 1985, 139, 105.
29. Yin, H.; D’Souza, F. W.; Lowary, T. L. J. Org. Chem. 2002, 67, 892.
30. In model experiments using thioglycoside 31 with 2-propanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the corresponding glycosides were obtained in good yields: $95 \%(\alpha: \beta=60: 40)$ by use of MeOTf; $91 \%(56: 44)$ by use of NIS-AgOTf.
31. (a) Stewart, J. J. P. J. Comput.-Aided Mol. Design 1990, 4, 1; (b) Coolidge, M. B.; Marlin, J. E.; Stewart, J. J. P. J. Comp. Chem. 1991, 12, 948.

[^0]: * Corresponding author. Fax: +81(86)2517853; e-mail: hanaya@cc.okayama-u.ac.jp

