359 research outputs found
MAPping the Chiral Inversion and Structural Transformation of a Metal-Tripeptide Complex having Ni-SOD Activity
This document is the Accepted Manuscript version of a Published Work that appeared in final form in the Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/ic102295s.The metal abstraction peptide (MAP) tag is a tripeptide sequence capable of abstracting a metal ion from a chelator and binding it with extremely high affinity at neutral pH. Initial studies on the nickel-bound form of the complex demonstrate that the tripeptide asparagine-cysteine-cysteine (NCC) binds metal with 2N:2S, square planar geometry and behaves as both a structural and functional mimic of Ni superoxide dismutase (Ni-SOD). Electronic absorption, circular dichroism (CD), and magnetic CD (MCD) data collected for Ni-NCC are consistent with a diamagnetic NiII center. It is apparent from the CD signal of Ni-NCC that the optical activity of the complex changes over time. Mass spectrometry data show that the mass of the complex is unchanged. Combined with the CD data, this suggests that chiral rearrangement of the complex occurs. Following incubation of the nickel-containing peptide in D2O and back-exchange into H2O, incorporation of deuterium into non-exchangeable positions is observed, indicating chiral inversion occurs at two of the alpha carbon atoms in the peptide. Control peptides were used to further characterize the chirality of the final nickel-peptide complex, and DFT calculations were performed to validate the hypothesized position of the chiral inversions. In total, these data indicate Ni-SOD activity is increased proportionally to the degree of structural change in the complex over time, as cross-correlation between the change in CD signal and change in SOD activity reveals a linear relationship
Controlling the Chiral Inversion Reaction of the Metallopeptide Ni-Asparagine-Cysteine-Cysteine with Dioxygen
This document is the Accepted Manuscript version of a Published Work that appeared in final form in the Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/ic301717q.Synthetically generated metallopeptides have the potential to serve a variety of roles in biotechnology applications, but the use of such systems is often hampered by the inability to control secondary reactions. We have previously reported that the NiII complex of the tripeptide LLL-asparagine-cysteine-cysteine, LLL-NiII-NCC, undergoes metal-facilitated chiral inversion to DLD-NiII-NCC, which increases the observed superoxide scavenging activity. However, the mechanism for this process remained unexplored. Electronic absorption and circular dichroism studies of the chiral inversion reaction of NiII-NCC reveal a unique dependence on dioxygen. Specifically, in the absence of dioxygen, the chiral inversion is not observed, even at elevated pH, whereas the addition of O2 initiates this reactivity and concomitantly generates superoxide. Scavenging experiments using acetaldehyde are indicative of the formation of carbanion intermediates, demonstrating that inversion takes place by deprotonation of the alpha carbons of Asn1 and Cys3. Together, these data are consistent with the chiral inversion being dependent on the formation of a NiIII-NCC intermediate from NiII-NCC and O2. The data further suggest that the anionic thiolate and amide ligands in NiII-NCC inhibit Cα–H deprotonation for the NiII oxidation state, leading to a stable complex in the absence of O2. Together, these results offer insights into the factors controlling reactivity in synthetic metallopeptides
A novel tripeptide model of nickel superoxide dismutase
This document is the Accepted Manuscript version of a Published Work that appeared in final form in the Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/ic901828m.Nickel superoxide dismutase (Ni-SOD) catalyzes the disproportionation of superoxide to molecular oxygen and hydrogen peroxide, but the overall reaction mechanism has yet to be determined. Peptide-based models of the 2N:2S nickel coordination sphere of Ni-SOD have provided some insight into the mechanism of this enzyme. Here we show that the coordination sphere of Ni-SOD can be mimicked using the tripeptide asparagine-cysteine-cysteine (NCC). NCC binds nickel with extremely high affinity at physiological pH with 2N:2S geometry, as demonstrated by electronic absorption and circular dichroism (CD) data. Like Ni-SOD, Ni-NCC has mixed amine/amide ligation that favors metal-based oxidation over ligand-based oxidation. Electronic absorption, CD, and magnetic CD data (MCD) collected for Ni-NCC are consistent with a diamagnetic Ni(II) center bound in square planar geometry. Ni-NCC is quasi-reversibly oxidized with a midpoint potential of 0.72(2) V (versus Ag/AgCl) and breaks down superoxide in an enzyme-based assay, supporting its potential use as a model for Ni-SOD chemistry
Rivervis::a tool for visualising river ecosystems
There is a growing need to better understand and communicate multi-dimensional river ecosystem processes and properties at the catchment scale for both scientific research and integrated catchment management. Data visualisation is believed as a very useful approach to support this need. However, there is a lack of visualisation applications tailored for river ecosystems, especially for visualising both river environmental data and their spatial and topological relations. To fill up the gap, this paper introduces an R package rivervis, which has been developed as a free, easy-to-use and efficient visualisation solution for river ecosystems. This novel tool is able to visualise riverine data in a compact and comparable way, with retaining the river network topology and reflecting real distance between sites of interest. The rivervis package visualises variables according to their measurement types – either quantitative or qualitative/semi-quantitative data. This type-based principle makes the package applicable for a wide range of scenarios with data in forms of index values, condition gradings and categories. By producing topological river network diagrams, the package helps to understand the functioning and interconnections of riverine ecosystem at the catchment scale, especially the longitudinal upstream-downstream and tributary-mainstream connectivity and relationships. It can also be used to study the associations between biological communities, physical conditions and anthropogenic activities. The Ballinderry River Basin in the UK, as a data-rich river basin with a reasonable complex river network, is used to demonstrate the rationale, functions and capabilities of the R-package
Embedding the Ni-SOD mimetic Ni-NCC within a polypeptide sequence alters specificity of the reaction pathway
This document is the Accepted Manuscript version of a Published Work that appeared in final form in the Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/ic301175f.The unique metal abstracting peptide (MAP) asparagine-cysteine-cysteine (NCC) binds nickel in a square planar 2N:2S geometry and acts as a mimic of the enzyme nickel superoxide dismutase (Ni-SOD). The Ni-NCC tripeptide complex undergoes rapid, site-specific chiral inversion to DLD-NCC in the presence of oxygen. Superoxide scavenging activity increases proportionally with the degree of chiral inversion. Characterization of the NCC sequence within longer peptides with absorption, circular dichroism (CD), and magnetic CD (MCD) spectroscopies and mass spectrometry (MS) shows that the geometry of metal coordination is maintained, though the electronic properties of the complex are varied to a small extent due to bis-amide, rather than amine/amide, coordination. In addition, both the Ni-tripeptides and Ni-pentapeptides have a −2 charge. The study here demonstrates that the chiral inversion chemistry does not occur when NCC is embedded in a longer polypeptide sequence. Nonetheless, the superoxide scavenging reactivity of the embedded Ni-NCC module is similar to that of the chirally inverted tripeptide complex, which is consistent with a minor change in reduction potential for the Ni-pentapeptide. Together, this suggests that the charge of the complex could affect the SOD activity as much as a change in primary coordination sphere. In Ni-NCC and other Ni-SOD mimics, changes in chirality, superoxide scavenging activity, and oxidation of the peptide itself all depend on the presence of dioxygen or its reduced derivatives (e.g., superoxide), and the extent to which each of these distinct reactions occurs is ruled by electronic and steric effects that emenate from the organization of ligands around the metal center
Mortality According to CD4 Count at Start of Combination Antiretroviral Therapy Among HIV-infected Patients Followed for up to 15 Years After Start of Treatment: Collaborative Cohort Study.
BACKGROUND: CD4 count at start of combination antiretroviral therapy (ART) is strongly associated with short-term survival, but its association with longer-term survival is less well characterized.
METHODS: We estimated mortality rates (MRs) by time since start of ART (<0.5, 0.5-0.9, 1-2.9, 3-4.9, 5-9.9, and ≥10 years) among patients from 18 European and North American cohorts who started ART during 1996-2001. Piecewise exponential models stratified by cohort were used to estimate crude and adjusted (for sex, age, transmission risk, period of starting ART [1996-1997, 1998-1999, 2000-2001], and AIDS and human immunodeficiency virus type 1 RNA at baseline) mortality rate ratios (MRRs) by CD4 count at start of ART (0-49, 50-99, 100-199, 200-349, 350-499, ≥500 cells/µL) overall and separately according to time since start of ART.
RESULTS: A total of 6344 of 37 496 patients died during 359 219 years of follow-up. The MR per 1000 person-years was 32.8 (95% confidence interval [CI], 30.2-35.5) during the first 6 months, declining to 16.0 (95% CI, 15.4-16.8) during 5-9.9 years and 14.2 (95% CI, 13.3-15.1) after 10 years' duration of ART. During the first year of ART, there was a strong inverse association of CD4 count at start of ART with mortality. This diminished over the next 4 years. The adjusted MRR per CD4 group was 0.97 (95% CI, .94-1.00; P = .054) and 1.02 (95% CI, .98-1.07; P = .32) among patients followed for 5-9.9 and ≥10 years, respectively.
CONCLUSIONS: After surviving 5 years of ART, the mortality of patients who started ART with low baseline CD4 count converged with mortality of patients with intermediate and high baseline CD4 counts
Microalbuminuria associated with indicators of inflammatory activity in an HIV-positive population
Background. The survival of human immunodeficiency virus (HIV)-infected patients has increased significantly since the introduction of combination antiretroviral therapy, leading to the development of important long-term complications including cardiovascular disease (CVD) and renal disease. Microalbuminuria, an indicator of glomerular injury, is associated with an increased risk of progressive renal deterioration, CVD and mortality. However, the prevalence of microalbuminuria has barely been investigated in HIV-infected individuals
Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic
Over 30 years ago Professor David Barker first proposed the theory that events in early life could explain an individual\u27s risk of non-communicable disease in later life: the developmental origins of health and disease (DOHaD) hypothesis. During the 1990s the validity of the DOHaD hypothesis was extensively tested in a number of human populations and the mechanisms underpinning it characterised in a range of experimental animal models. Over the past decade, researchers have sought to use this mechanistic understanding of DOHaD to develop therapeutic interventions during pregnancy and early life to improve adult health. A variety of animal models have been used to develop and evaluate interventions, each with strengths and limitations. It is becoming apparent that effective translational research requires that the animal paradigm selected mirrors the tempo of human fetal growth and development as closely as possible so that the effect of a perinatal insult and/or therapeutic intervention can be fully assessed. The guinea pig is one such animal model that over the past two decades has demonstrated itself to be a very useful platform for these important reproductive studies. This review highlights similarities in the in utero development between humans and guinea pigs, the strengths and limitations of the guinea pig as an experimental model of DOHaD and the guinea pig\u27s potential to enhance clinical therapeutic innovation to improve human health. (Figure presented.)
T Cell Activation and Senescence Predict Subclinical Carotid Artery Disease in HIV-Infected Women
Background. Individuals infected with human immunodeficiency virus (HIV) have increased risk of cardiovascular events. It is unknown whether T cell activation and senescence, 2 immunologic sequelae of HIV infection, are associated with vascular disease among HIV-infected adults
- …