344 research outputs found

    Reconsidering photometric estimation of local star formation environment and its correlation with Type Ia Supernova luminosity

    Full text link
    Recent studies on the environmental dependence of Type Ia supernova (SN Ia) luminosity focus on the local environment where the SN exploded, considering that this is more directly linked to the SN progenitors. However, there is a debate about the local environmental, specifically local star formation rate (SFR), dependence of the SN Ia luminosity. A recent study claims that the dependence is insignificant (0.051±0.0200.051 \pm 0.020 mag; 2.6σ2.6\sigma), based on the local SFR measurement by fitting local ugrizyugrizy photometry data. However, we find that this photometric local SFR measurement is inaccurate. We argue this based on the theoretical background of SFR measurement and the methodology used to make that claim with their local ugrizyugrizy photometry data, especially due to a limited range of extinction parameters used when fitting the data. Therefore, we re-analyse the same host galaxies with the same fitting code, but with more physically motivated extinction treatments and global ugrizugriz photometry of host galaxies. We estimate global stellar mass and SFR. Then, local star formation environments are inferred by using the method which showed that SNe Ia in globally passive galaxies have locally passive environments, while those in globally star-forming low-mass galaxies have locally star-forming environments. We find that there is significant local environmental dependence of SN Ia luminosities: SNe Ia in locally star-forming environments are 0.072±0.0210.072\pm0.021 mag (3.4σ3.4\sigma) fainter than those in locally passive environments, even though SN Ia luminosities have been further corrected by the BBC method that reduces the size of the dependence.Comment: 10 pages, 7 figures, 3 tables and 1 appendix table containing data we used; accepted for publication in MNRA

    Orcc's Compa-Backend demonstration

    Get PDF
    International audienceThis paper presents the implementation of a video decoding application starting from its dataflow and CAL representations. Our objective is to demonstrate the ability of the Open RVC-CAL Compiler (Orcc) to generate code for embedded systems. For the demonstration, the video application will be an MPEG-4 Part2 decoder. The targeted architecture is a multi-core heterogeneous system deployed onto the Zynq platform from Xilinx

    Significant Carrier Extraction Enhancement at the Interface of an InN/p-GaN Heterojunction under Reverse Bias Voltage

    Get PDF
    In this paper, a superior-quality InN/p-GaN interface grown using pulsed metalorganic vapor-phase epitaxy (MOVPE) is demonstrated. The InN/p-GaN heterojunction interface based on high-quality InN (electron concentration 5.19 × 1018 cm−3 and mobility 980 cm2/(V s)) showed good rectifying behavior. The heterojunction depletion region width was estimated to be 22.8 nm and showed the ability for charge carrier extraction without external electrical field (unbiased). Under reverse bias, the external quantum efficiency (EQE) in the blue spectral region (300⁻550 nm) can be enhanced significantly and exceeds unity. Avalanche and carrier multiplication phenomena were used to interpret the exclusive photoelectric features of the InN/p-GaN heterojunction behavior

    Laser module based on monolithically integrated MOPAs at 1.5 ”m for space-borne lidar applications

    Get PDF
    Space-borne lidar systems require laser transmitters with very good performance in terms of output power, beam quality, conversion efficiency, long term reliability and environmental compatibility. Atmospheric gas sensing additionally requires spectral purity and stability. Solid state lasers are considered the most mature technology for space lidar applications, at expenses of a relatively large size and low conversion efficiency [1]- [3]. Fiber lasers present very high power levels and very good beam quality, but they require specific attention due to their sensitivity to radiation. In this sense, progresses have been made to develop high power fiber amplifiers for different space applications [4]-[6]. Recently, a new generation of high brightness semiconductor lasers based on tapered geometry has demonstrated relatively high average power levels together with a good beam quality [7]-[10]. These devices are emerging candidates for its direct use in space lidar systems

    Room-temperature continuous-wave topological Dirac-vortex microcavity lasers on silicon

    Get PDF
    Robust laser sources are a fundamental building block for contemporary information technologies. Originating from condensed-matter physics, the concept of topology has recently entered the realm of optics, offering fundamentally new design principles for lasers with enhanced robustness. In analogy to the well-known Majorana fermions in topological superconductors, Dirac-vortex states have recently been investigated in passive photonic systems and are now considered as a promising candidate for robust lasers. Here, we experimentally realize the topological Dirac-vortex microcavity lasers in InAs/InGaAs quantum-dot materials monolithically grown on a silicon substrate. We observe room-temperature continuous-wave linearly polarized vertical laser emission at a telecom wavelength. We confirm that the wavelength of the Dirac-vortex laser is topologically robust against variations in the cavity size, and its free spectral range defies the universal inverse scaling law with the cavity size. These lasers will play an important role in CMOS-compatible photonic and optoelectronic systems on a chip

    Room-temperature continuous-wave Dirac-vortex topological lasers on silicon

    Full text link
    Robust laser sources are a fundamental building block for contemporary information technologies. Originating from condensed-matter physics, the concept of topology has recently entered the realm of optics, offering fundamentally new design principles for lasers with enhanced robustness. In analogy to the well-known Majorana fermions in topological superconductors, Dirac-vortex states have recently been investigated in passive photonic systems and are now considered as a promising candidate for single-mode large-area lasers. Here, we experimentally realize the first Dirac-vortex topological lasers in InAs/InGaAs quantum-dot materials monolithically grown on a silicon substrate. We observe room-temperature continuous-wave single-mode linearly polarized vertical laser emission at a telecom wavelength. Most importantly, we confirm that the wavelength of the Dirac-vortex laser is topologically robust against variations in the cavity size, and its free spectral range defies the universal inverse scaling law with the cavity size. These lasers will play an important role in CMOS-compatible photonic and optoelectronic systems on a chip

    GaAs Compounds Heteroepitaxy on Silicon for Opto and Nano Electronic Applications

    Get PDF
    III-V semiconductors present interesting properties and are already used in electronics, lightening and photonic devices. Integration of III-V devices onto a Si CMOS platform is already in production using III-V devices transfer. A promising way consists in using hetero-epitaxy processes to grow the III-V materials directly on Si and at the right place. To reach this objective, some challenges still needed to be overcome. In this contribution, we will show how to overcome the different challenges associated to the heteroepitaxy and integration of III-As onto a silicon platform. We present solutions to get rid of antiphase domains for GaAs grown on exact Si(100). To reduce the threading dislocations density, efficient ways based on either insertion of InGaAs/GaAs multilayers defect filter layers or selective epitaxy in cavities are implemented. All these solutions allows fabricating electrically pumped laser structures based on InAs quantum dots active region, required for photonic and sensing applications

    ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications

    Full text link
    Personal assistants, automatic speech recognizers and dialogue understanding systems are becoming more critical in our interconnected digital world. A clear example is air traffic control (ATC) communications. ATC aims at guiding aircraft and controlling the airspace in a safe and optimal manner. These voice-based dialogues are carried between an air traffic controller (ATCO) and pilots via very-high frequency radio channels. In order to incorporate these novel technologies into ATC (low-resource domain), large-scale annotated datasets are required to develop the data-driven AI systems. Two examples are automatic speech recognition (ASR) and natural language understanding (NLU). In this paper, we introduce the ATCO2 corpus, a dataset that aims at fostering research on the challenging ATC field, which has lagged behind due to lack of annotated data. The ATCO2 corpus covers 1) data collection and pre-processing, 2) pseudo-annotations of speech data, and 3) extraction of ATC-related named entities. The ATCO2 corpus is split into three subsets. 1) ATCO2-test-set corpus contains 4 hours of ATC speech with manual transcripts and a subset with gold annotations for named-entity recognition (callsign, command, value). 2) The ATCO2-PL-set corpus consists of 5281 hours of unlabeled ATC data enriched with automatic transcripts from an in-domain speech recognizer, contextual information, speaker turn information, signal-to-noise ratio estimate and English language detection score per sample. Both available for purchase through ELDA at http://catalog.elra.info/en-us/repository/browse/ELRA-S0484. 3) The ATCO2-test-set-1h corpus is a one-hour subset from the original test set corpus, that we are offering for free at https://www.atco2.org/data. We expect the ATCO2 corpus will foster research on robust ASR and NLU not only in the field of ATC communications but also in the general research community.Comment: Manuscript under review; The code will be available at https://github.com/idiap/atco2-corpu
    • 

    corecore