154 research outputs found

    SAWA experiment ? properties of mineral dust aerosol as seen by synergic lidar and sun-photometer measurements

    No full text
    International audienceWe propose a method of retrieving basic information on mineral dust aerosol particles from synergic sun-photometer and multi-wavelength lidar measurements as well as from the observations of lidar light depolarisation. We use this method in a case study of mineral dust episode in Central Europe. Lidar signals are inversed with a modified Klett-Fernald algorithm. Aerosol optical depth measured with the sun-photometer allows to reduce uncertainties in the inversion procedure through which we estimate vertical profile of aerosol extinction. Next we assume that aerosol particles may be represented by ensemble of randomly oriented, identical spheroids. Having calculated vertical profiles of aerosol extinction coefficients for lidar wavelengths, we compute the profiles of local Angstrom exponent. We use laser beam depolarisation together with the calculated Angstrom exponents to estimate the shapes (aspect ratios) and sizes of the spheroids. Numerical calculations are performed with the transition matrix (T-matrix) algorithm by M. Mishchenko. The proposed method was first used during SAWA measurement campaign in Warsaw, spring 2005, to characterise the particles of desert dust, drifting over Poland with a southern-eastern wind (13?14 April). Observations and T-matrix calculations show that mode radii of spheroids representative for desert aerosols' particles are in the range of 0.15?0.3 ?m, while their aspect ratios are lower than 0.7 or larger than 1.7

    Variability in black carbon mass concentration in surface snow at Svalbard

    Get PDF
    Black carbon (BC) is a significant forcing agent in the Arctic, but substantial uncertainty remains to quantify its climate effects due to the complexity of the different mechanisms involved, in particular related to processes in the snowpack after deposition. In this study, we provide detailed and unique information on the evolution and variability in BC content in the upper surface snow layer during the spring period in Svalbard (Ny-Ålesund). A total of two different snow-sampling strategies were adopted during spring 2014 (from 1 April to 24 June) and during a specific period in 2015 (28 April to 1 May), providing the refractory BC (rBC) mass concentration variability on a seasonal variability with a daily resolution (hereafter seasonal/daily) and daily variability with an hourly sampling resolution (hereafter daily/hourly) timescales. The present work aims to identify which atmospheric variables could interact with and modify the mass concentration of BC in the upper snowpack, which is the snow layer where BC particles affects the snow albedo. Atmospheric, meteorological and snow-related physico-chemical parameters were considered in a multiple linear regression model to identify the factors that could explain the variations in BC mass concentrations during the observation period. Precipitation events were the main drivers of the BC variability during the seasonal experiment; however, in the high-resolution sampling, a negative association has been found. Snow metamorphism and the activation of local sources (Ny-Ålesund was a coal mine settlement) during the snowmelt periods appeared to play a non-negligible role. The statistical analysis suggests that the BC content in the snow is not directly associated to the atmospheric BC load

    Microscopic description of the surface dipole plasmon in large Na_N clusters (950 < N < 12050)

    Full text link
    Fully microscopic RPA/LDA calculations of the dipole plasmon for very large neutral and charged sodium clusters, Na_N^Z+, in the size range 950 < N < 12050 are presented for the first time. 60 different sizes are considered altogether, which allows for an in-depth investigation of the asymptotic behavior of both the width and the position of the plasmon.Comment: Latex/Revtex, 4 pages with 4 Postscript figures, accepted for publication in Physical Review

    ACE-ASIA - Regional climatic and atmospheric chemical effects of Asian dust and pollution

    Get PDF
    Although continental-scale plumes of Asian dust and pollution reduce the amount of solar radiation reaching the earth's surface and perturb the chemistry of the atmosphere, our ability to quantify these effects has been limited by a lack of critical observations, particularly of layers above the surface. Comprehensive surface, airborne, shipboard, and satellite measurements of Asian aerosol chemical composition, size, optical properties, and radiative impacts were performed during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) study. Measurements within a massive Chinese dust storm at numerous widely spaced sampling locations revealed the highly complex structure of the atmosphere, in which layers of dust, urban pollution, and biomass-burning smoke may be transported long distances as distinct entities or mixed together. The data allow a first-time assessment of the regional climatic and atmospheric chemical effects of a continental-scale mixture of dust and pollution. Our results show that radiative flux reductions during such episodes are sufficient to cause regional climate change

    Radiative impact of an extreme Arctic biomass-burning event

    Get PDF
    The aim of the presented study was to investigate the impact on the radiation budget of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean aerosol optical depth increased by the factor of 10 above the average summer background values, this large aerosol load event is considered particularly exceptional in the last 25 years. In situ data with hygroscopic growth equations, as well as remote sensing measurements as inputs to radiative transfer models, were used, in order to estimate biases associated with (i) hygroscopicity, (ii) variability of single-scattering albedo profiles, and (iii) plane-parallel closure of the modelled atmosphere. A chemical weather model with satellite-derived biomass-burning emissions was applied to interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event (14:00 9 July–11:30 11 July) resulted in a mean aerosol direct radiative forcing at the levels of −78.9 and −47.0 W m−2 at the surface and at the top of the atmosphere, respectively, for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2, estimated by radiometer and model simulations at the surface. Ultimately, uncertainty associated with the plane-parallel atmosphere approximation altered results by about 2 W m−2. Furthermore, model-derived aerosol direct radiative forcing efficiency reached on average −126 W m−2∕τ550 and −71 W m−2∕τ550 at the surface and at the top of the atmosphere, respectively. The heating rate, estimated at up to 1.8 K day−1 inside the biomass-burning plume, implied vertical mixing with turbulent kinetic energy of 0.3 m2 s−2

    Stepping on invisible land: on the importance of communicating the value of soils.

    Get PDF
    Soils play fundamental roles in the functioning of the Earth's ecosystems. Despite numerous initiatives to protect soils, it continues to be generally perceived as dirt or, at best, the surface we walk on. To better understand soil perception by the public, we conducted a survey with 99 participants from Poland and Brazil. We applied opportunity sampling and conducted semi-structured interviews with 40 respondents from Poland and 30 from Brazil, and 29 unstructured interviews in Brazil. Most of the respondents (53%) of the semi-structured interviews associated soil with the surface where plants grow, while 27% said that it is the ground we step on. When asked about pro-environmental campaigns, none of the respondents pointed to soil-related initiatives. Most of the respondents (99%) claimed that there is a need to increase their knowledge about the importance of soils, mostly through education (30%). The majority of the respondents of the unstructured interviews in Brazil indicated provision services provided by soils and pointed to the need for youth engagement in soil communication, corroborating the results from the semi-structured interviews. To address this, we present the results on artistic workshops as an experimental model for teaching and dissemination. We present two short documentary movies reporting the results from unstructured interviews and artistic workshops that can be used as data gathering tools, teaching tools and for dissemination purposes. This is a novel approach to communicating with the relevant stakeholders to promote more sustainable resource management

    Experimental study of smog microphysical and optical vertical structure in the Silesian Beskids, Poland

    Get PDF
    This study presents the vertical profiles of aerosol optical and microphysical properties obtained from cable car and ground-based measurements in the Silesian Beskids, Poland. The data were collected during a measurement campaign between 25 February and March 11, 2018. An AE-51 micro-aethalometer and PMS7003 and OPC-N2 optical particle counters were mounted on the cable car and used to measure the profiles of equivalent of black carbon (eBC) concentration and aerosol size distribution. In situ measurements of the optical properties of the aerosols were obtained using an AE-31 aethalometer and photoacoustic devices. A prototype lidar was used to determine the planetary boundary layer (PBL) height and the aerosol layers. In the middle phase of the study (1–6 March 2018), significant night-time temperature inversions were observed. During the inversion period, the parameters describing the amount of aerosols in the air increased significantly. The concentration of eBC exceeded the level of 15 ÎŒg/m3 several times, with an average level of 5.39 ± 4.42 ÎŒg/m3. Conversely, the results obtained in the first and third phases of the experiment were at the level of the aerosol background, being 1.45 ± 0.88 ÎŒg/m3 and 0.90 ± 0.95 ÎŒg/m3, respectively. Significant differences were also observed in the vertical profiles of PM10 mass and eBC concentration. In the middle phase of the study, the profiles showed a significant reduction in the concentration of pollutants with height, while in the first and third phases, there were slight variations with height

    Aerosol Characteristics at a High Altitude Location in Central Himalayas: Optical Properties and Radiative Forcing

    Full text link
    Collocated measurements of the mass concentrations of aerosol black carbon (BC) and composite aerosols near the surface were carried out along with spectral aerosol optical depths (AODs) from a high altitude station, Manora Peak in Central Himalayas, during a comprehensive aerosol field campaign in December 2004. Despite being a pristine location in the Shivalik Ranges of Central Himalayas, and having a monthly mean AOD (at 500 nm) of 0.059 ±\pm 0.033 (typical to this site), total suspended particulate (TSP) concentration was in the range 15 - 40 micro g m^(-3) (mean value 27.1 ±\pm 8.3 micro g m^(-3)). Interestingly, aerosol BC had a mean concentration of 1.36 ±\pm 0.99 micro g m^(-3), contributed to ~5.0 ±\pm 1.3 % to the composite aerosol mass. This large abundance of BC is found to have linkages to the human activities in the adjoining valley and to the boundary layer dynamics. Consequently, the inferred single scattering albedo lies in the range of 0.87 to 0.94 (mean value 0.90 ±\pm 0.03), indicating significant aerosol absorption. The estimated aerosol radiative forcing was as low as 4.2 W m^(-2) at the surface, +0.7 W m^(-2) at the top of the atmosphere, implying an atmospheric forcing of +4.9 W m^(-2). Though absolute value of the atmospheric forcing is quite small, which arises primarily from the very low AOD (or the column abundance of aerosols), the forcing efficiency (forcing per unit optical depth) was ∌\sim88 W m^(-2), which is attributed to the high BC mass fraction.Comment: 32 Pages, Accepted in JGR (Atmosphere

    Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign

    Get PDF
    Submicron atmospheric aerosol samples were collected during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) 2004 campaign on four platforms: Chebogue Point (Nova Scotia, Canada), Appledore Island (Maine), the CIRPAS Twin Otter over Ohio, and the NOAA R/V Ronald H. Brown in the Gulf of Maine. Saturated aliphatic C-C-H, unsaturated aliphatic C=C−H, aromatic C=C−H, organosulfur C-O-S, carbonyl C=O, and organic hydroxyl C-OH functional groups were measured by calibrated Fourier Transform Infrared (FTIR) spectroscopy at all four sampling platforms. The ratio of molar concentrations of carbonyl C=O to saturated aliphatic C-C-H groups was nearly constant at each sampling platform, with the Twin Otter samples having the lowest ratio at 0.1 and the three more coastal platforms having ratios of 0.4 and 0.5. Organic mass (OM) to organic carbon (OC) ratios follow similar trends for the four platforms, with the Twin Otter having the lowest ratio of 1.4 and the coastal platforms having slightly higher values typically between 1.5 and 1.6. Organosulfur compounds were occasionally observed. Collocated organic aerosol sampling with two Aerodyne aerosol mass spectrometers for OM, a Sunset Laboratory thermo-optical analysis instrument for OC, and an ion chromatography-particle into liquid sampler (IC-PILS) for speciated carboxylic acids provided comparable results for most of the project, tracking the time series of FTIR OM, OC, and carbonyl groups, respectively, and showing simultaneous peaks of similar magnitude during most of the project. The FTIR/IC-PILS comparison suggests that about 9% of the carbonyl groups found in submicron organic particles on the Twin Otter are typically associated with low molecular weight carboxylic acids
    • 

    corecore