4,647 research outputs found
Assessment of reward responsiveness in the response bias probabilistic reward task in rats: implications for cross-species translational research
Mood disorders, such as major depressive disorder, are characterized by abnormal reward responsiveness. The Response Bias Probabilistic Reward Task (hereafter referred to as probabilistic reward task (PRT)) quantifies reward responsiveness in human subjects, and an equivalent animal assessment is needed to facilitate preclinical translational research. Thus, the goals of the present studies were to develop, validate and characterize a rat analog of the PRT. Adult male Wistar and Long–Evans rats were trained in operant testing chambers to discriminate between two tone stimuli that varied in duration (0.5 and 2 s). During a subsequent test session consisting of 100 trials, the two tones were made ambiguous (0.9 and 1.6 s) and correct identification of one tone was reinforced with a food pellet three times more frequently than the other tone. In subsequent experiments, Wistar rats were administered either a low dose of the dopamine D2/D3 receptor agonist pramipexole (0.1 mg kg−1, subcutaneous) or the psychostimulant amphetamine (0.5 mg kg−1, intraperitoneal) before the test session. Similar to human subjects, both rat strains developed a response bias toward the more frequently reinforced stimulus, reflecting robust reward responsiveness. Mirroring prior findings in humans, a low dose of pramipexole blunted response bias. Moreover, in rats, amphetamine potentiated response bias. These results indicate that in rats, reward responsiveness can be quantified and bidirectionally modulated by pharmacological manipulations that alter striatal dopamine transmission. Thus, this new procedure in rats, which is conceptually and procedurally analogous to the one used in humans, provides a reverse translational platform to investigate abnormal reward responsiveness across species
Are strategies teachable? Developing strategies in Foreign Language Education for more autonomy
There is an open discussion about strategies in foreign language education and more specifically whether or not they can be taught and be included in Foreign Language Instruction. The purpose of this paper is to trace teachable strategies among commonly used ones and reinforce their use in order to gain autonomy in foreign language use.Accordingly, communication is divided in three categories:a) oral face-to-face interactionb) creative production of written speech andc) synchronous text-based computer mediated communication.These are the results of three separate researches and the effort of this paper is to combine them and provide a synthesis of strategies used in the 3 domains mentioned above
Recommended from our members
The cardiomyocyte "redox rheostat": Redox signalling via the AMPK-mTOR axis and regulation of gene and protein expression balancing survival and death.
Reactive oxygen species (ROS) play a key role in development of heart failure but, at a cellular level, their effects range from cytoprotection to induction of cell death. Understanding how this is regulated is crucial to develop novel strategies to ameliorate only the detrimental effects. Here, we revisited the fundamental hypothesis that the level of ROS per se is a key factor in the cellular response by applying different concentrations of H2O2 to cardiomyocytes. High concentrations rapidly reduced intracellular ATP and inhibited protein synthesis. This was associated with activation of AMPK which phosphorylated and inhibited Raptor, a crucial component of mTOR complex-1 that regulates protein synthesis. Inhibition of protein synthesis by high concentrations of H2O2 prevents synthesis of immediate early gene products required for downstream gene expression, and such mRNAs (many encoding proteins required to deal with oxidant stress) were only induced by lower concentrations. Lower concentrations of H2O2 promoted mTOR phosphorylation, associated with differential recruitment of some mRNAs to the polysomes for translation. Some of the upregulated genes induced by low H2O2 levels are cytoprotective. We identified p21Cip1/WAF1 as one such protein, and preventing its upregulation enhanced the rate of cardiomyocyte apoptosis. The data support the concept of a "redox rheostat" in which different degrees of ROS influence cell energetics and intracellular signalling pathways to regulate mRNA and protein expression. This sliding scale determines cell fate, modulating survival vs death
The Effects of Cariprazine and Aripiprazole on PCP-Induced Deficits on Attention Assessed in the 5-Choice Serial Reaction Time Task
Attentional processing deficits are a core feature of schizophrenia, likely contributing to the persistent functional and occupational disability observed in patients with schizophrenia. The pathophysiology of schizophrenia is hypothesized to involve dysregulation of NMDA receptor-mediated glutamate transmission, contributing to disruptions in normal dopamine transmission. Preclinical investigations often use NMDA receptor antagonists, such as phencyclidine (PCP), to induce cognitive disruptions relevant to schizophrenia. We sought to test the ability of partial dopamine D-2/D-3 agonists, cariprazine and aripiprazole, to attenuate PCP-induced deficits in attentional performance. The objective of this study is to determine whether systemic administration of cariprazine or aripiprazole attenuated 5-choice serial reaction time task (5-CSRTT) deficits induced by repeated exposure to PCP. We utilized a repeated PCP-treatment regimen (2 mg/kg, subcutaneous [s.c.], once daily for 5 days) in rats to induce deficits in the 5-CSRTT. Rats were pre-treated with cariprazine (0.03, 0.1, or 0.3 mg/kg, oral [p.o.]) or aripiprazole (1, 3, or 10 mg/kg, p.o.) to determine whether they prevented PCP-induced deficits in the 5-CSRTT performance. PCP treatment increased inappropriate responding in the 5-CSRTT, elevating incorrect, premature, and timeout responses. Cariprazine treatment reduced PCP-induced increases in inappropriate responding. However, at higher doses, cariprazine produced non-specific response suppression, confounding interpretation of the attenuated PCP-induced deficits. Aripiprazole treatment also attenuated PCP-induced deficits; however, unlike cariprazine treatment, aripiprazole reduced correct responding and increased omissions. Cariprazine and aripiprazole both demonstrated potential in attenuating PCP-induced deficits in the 5-CSRTT performance. While both compounds produced non-specific response suppression, these effects were absent when 0.03 mg/kg cariprazine was administered
The Selective Serotonin Reuptake Inhibitor Paroxetine, but not Fluvoxamine, Decreases Methamphetamine Conditioned Place Preference in Mice
Monoamine transporters are the main targets of methamphetamine (METH). Recently, we showed that fluoxetine, a selective serotonin reuptake inhibitor (SSRI), decreased METH conditioned place preference (CPP), suggesting that serotonin transporter (SERT) inhibition reduces the rewarding effects of METH. To further test this hypothesis, in the present study we investigated the effects of additional SSRIs, paroxetine and fluvoxamine, on METH CPP in C57BL/6J mice. In the CPP test, pretreatment with 20 mg/kg paroxetine abolished the CPP for METH, whereas pretreatment with 100 mg/kg fluvoxamine prior to administration of METH failed to inhibit METH CPP. These results suggest that paroxetine, a medication widely used to treat depression, may be a useful tool for treating METH dependence. Further, these data suggest that molecules other than the SERT [such as G protein-activated inwardly rectifying K+ (GIRK) channels] whose activities are modulated by paroxetine and fluoxetine, but not by fluvoxamine, are involved in reducing METH CPP by paroxetine and fluoxetine
Recommended from our members
Temporal regulation of expression of immediate early and second phase transcripts by endothelin-1 in cardiomyocytes
Background: Endothelin-1 stimulates Gq protein-coupled receptors to promote proliferation in dividing cells or hypertrophy in terminally differentiated cardiomyocytes. In cardiomyocytes, endothelin-1 rapidly (within minutes) stimulates protein kinase signaling, including extracellular-signal regulated kinases 1/2 (ERK1/2; though not ERK5), with phenotypic/physiological changes developing from approximately 12 h. Hypertrophy is associated with changes in mRNA/protein expression, presumably consequent to protein kinase signaling, but the connections between early, transient signaling events and developed hypertrophy are unknown. Results: Using microarrays, we defined the early transcriptional responses of neonatal rat cardiomyocytes to endothelin-1 over 4 h, differentiating between immediate early gene (IEG) and second phase RNAs with cycloheximide. IEGs exhibited differential temporal and transient regulation, with expression of second phase RNAs within 1 h. Of transcripts upregulated at 30 minutes encoding established proteins, 28 were inhibited >50% by U0126 (which inhibits ERK1/2/5 signaling), with 9 inhibited 25-50%. Expression of only four transcripts was not inhibited. At 1 h, most RNAs (approximately 67%) were equally changed in total and polysomal RNA with approximately 17% of transcripts increased to a greater extent in polysomes. Thus, changes in expression of most protein-coding RNAs should be reflected in protein synthesis. However, approximately 16% of transcripts were essentially excluded from the polysomes, including some protein-coding mRNAs, presumably inefficiently translated.
Conclusion: The phasic, temporal regulation of early transcriptional responses induced by endothelin-1 in cardiomyocytes indicates that, even in terminally differentiated cells, signals are propagated beyond the primary signaling pathways through transcriptional networks leading to phenotypic changes (that is, hypertrophy). Furthermore, ERK1/2 signaling plays a major role in this response
Recommended from our members
Shake table testing of a tuned mass damper inerter (Tmdi)-equipped structure and nonlinear dynamic modeling under harmonic excitations
This paper presents preliminary experimental results from a novel shaking table testing campaign investigating the dynamic response of a two-degree-of-freedom (2DOF) physical specimen with a grounded inerter under harmonic base excitation and contributes a nonlinear dynamic model capturing the behavior of the test specimen. The latter consists of a primary mass connected to the ground through a high damping rubber isolator (HDRI) and a secondary mass connected to the primary mass through a second HDRI. Further, a flywheel-based rack-and-pinion inerter prototype device is used to connect the secondary mass to the ground. The resulting specimen resembles the tuned mass damper inerter (TMDI) configuration with grounded inerter analytically defined and numerically assessed by the authors in a number of previous publications. Physical specimens with three different inerter coefficients are tested on the shake table under sine-sweep excitation with three different amplitudes. Experimental frequency response functions (FRFs) are derived manifesting a softening nonlinear behavior of the specimens and enhanced vibration suppression with increased inerter coefficient. Further, a 2DOF parametric nonlinear model of the specimen is established accounting for non-ideal inerter device behavior and its potential to characterize experimental response time-histories, FRFs, and force-displacement relationships of the HDRIs and of the inerter is verified
- …