175 research outputs found

    Exploiting double exchange Diels-Alder cycloadditions for immobilization of peptide nucleic acids on gold nanoparticles

    Get PDF
    The generation of PNA-decorated gold nanoparticles (AuNPs) has revealed to be more difficult as compared to the generation of DNA-functionalized ones. The less polar nature of this artificial nucleic acid system and the associated tendency of the neutral poly-amidic backbone to aspecifically adsorb onto the gold surface rather than forming a covalent bond through gold-thiol interaction, combined with the low solubility of PNAs itself, form the main limiting factors in the functionalization of AuNP. Here, we provide a convenient methodology that allows to easily conjugate PNAs to AuNP. Positively charged PNAs containing a masked furan moiety were immobilized via a double exchange Diels-Alder cycloaddition onto masked maleimide-functionalized AuNPs in a one-pot fashion. Conjugated PNA strands retain their ability to selectively hybridize with target DNA strands. Moreover, the duplexes resulting from hybridization can be detached through a retro-Diels-Alder reaction, thus allowing straightforward catch-and-release of specific nucleic acid targets

    Nanoparticle-based receptors mimic protein-ligand recognition

    Get PDF
    The self-assembly of a monolayer of ligands on the surface of noble metal nanoparticles dictates the fundamental nanoparticle\u2019s behavior and its functionality. In this combined computational\u2013experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which may explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs

    Identification of Design Principles for the Preparation of Colloidal Plexcitonic Materials

    Get PDF
    : Colloidal plexcitonic materials (CPMs) are a class of nanosystems where molecular dyes are strongly coupled with colloidal plasmonic nanoparticles, acting as nanocavities that enhance the light field. As a result of this strong coupling, new hybrid states are formed, called plexcitons, belonging to the broader family of polaritons. With respect to other families of polaritonic materials, CPMs are cheap and easy to prepare through wet chemistry methodologies. Still, clear structure-to-properties relationships are not available, and precise rules to drive the materials' design to obtain the desired optical properties are still missing. To fill this gap, in this article, we prepared a dataset with all CPMs reported in the literature, rationalizing their design by focusing on their three main relevant components (the plasmonic nanoparticles, the molecular dyes, and the capping layers) and identifying the most used and efficient combinations. With the help of statistical analysis, we also found valuable correlations between structure, coupling regime, and optical properties. The results of this analysis are expected to be relevant for the rational design of new CPMs with controllable and predictable photophysical properties to be exploited in a vast range of technological fields

    Hybrid nanoreceptors for high sensitivity detection of small molecules by NMR chemosensing

    Get PDF
    Self-assembled gold nanoparticles onto colloidal silica nanoparticles exhibited higher magnetization transfer efficiencies in NMR chemosensing experiments, allowing the detection of analytes as low as 10 ÎŒM

    Plasmon‐Assisted Energy Transfer in Hybrid Nanosystems

    Get PDF
    While direct optical excitation of carbon nanotubes activates only the tube species strictly matching the excitation source, excitation energy transfer processes provide a single excitation channel for all the nanotubes species in a sample. The requirement of an overlap between donor emission and acceptor absorption limits the poll of donors able to trasfer their excitation to the tubes, leaving the high‐energy part of the solar spectrum excluded from such processes. Here it is shown that the grafting of small metal nanoparticles to the tubes alters those rules, enabling energy transfer process from molecules for which the standard energy transfer process is strongly suppressed. The onset of an energy transfer band in the UV/blue spectral region is demonstrated for an hybrid gold‐pyrene‐nanotube system, yielding collective emission from all the tubes present in our samples upon excitation of pyrene

    Formyl-peptide Receptor Agonists and Amorphous SiO2-NPs Synergistically and Selectively Increase the Inflammatory Responses of Human Monocytes and PMNs

    Get PDF
    We tested whether amorphous SiO2-NPs and formyl-peptide receptor (FPRs) agonists synergistically activate human monocytes and neutrophil polymorphonuclear granulocytes (PMNs). Peptide ligands specifically binding to FPR1 (f-MLP) and to FPR2 (MMK-1, WKYMVM and WKYMVm) human isoforms did not modify the association of SiO2-NPs to both cell types or their cytotoxic effects. Similarly, the extent of CD80, CD86, CD83, ICAM-1 and MHCII expression in monocytes treated with SiO2-NPs was not significantly altered by any FPRs agonist. However, FPR1 stimulation with f-MLP strongly increased the secretion of IL-1ÎČ, IL-6 and IL-8 by human monocytes, and of IL-8 by PMNs in the presence of SiO2-NPs, due to the synergic stimulation of gene transcription. FPR2 agonists also up-modulated the production of IL-1ÎČ induced by monocytes treated with SiO2-NPs. In turn, SiO2-NPs increased the chemotaxis of PMNs toward FPR1-specific ligands, but not toward FPR2-specific ones. Conversely, the chemotaxis of monocytes toward FPR2-specific peptides was inhibited by SiO2-NPs. NADPH-oxidase activation triggered by FPR1- and FPR2-specific ligands in both cell types was not altered by SiO2-NPs. Microbial and tissue danger signals sensed by FPRs selectively amplified the functional responses of monocytes and PMNS to SiO2-NPs, and should be carefully considered in the assessment of the risk associated with nanoparticle exposure

    Selective targeting of proteins by hybrid polyoxometalates: Interaction between a bis-biotinylated hybrid conjugate and avidin

    Get PDF
    The Keggin-type polyoxometalate [\u3b3-SiW10O36]8 12 was covalently modified to obtain a bis-biotinylated conjugate able to bind avidin. Spectroscopic studies such as UV-vis, fluorimetry, circular dichroism, coupled to surface plasmon resonance technique were used to highlight the unique interplay of supramolecular interactions between the homotetrameric protein and the bis-functionalized polyanion. In particular, the dual recognition mechanism of the avidin encompasses (i) a complementary electrostatic association between the anionic surface of the polyoxotungstate and each positively charged avidin subunit and (ii) specific host-guest interactions between each biotinylated arm and a corresponding pocket on the tetramer subunits. The assembly exhibits peroxidase-like reactivity and it was used in aqueous solution for L-methionine methyl ester oxidation by H2O2. The recognition phenomenon was then exploited for the preparation of layer-by-layer films, whose structural evolution was monitored in situ by ATR-FTIR spectroscopy. Finally, cell tracking studies were performed by exploiting the specific interactions with a labeled streptavidin

    Binding and Uptake into Human Hepatocellular Carcinoma Cells of Peptide-Functionalized Gold Nanoparticles

    Get PDF
    One of the most daunting challenges of nanomedicine is the finding of appropriate targeting agents to deliver suitable payloads precisely to cells affected by malignancies. Even more complex is to achieve the ability to ensure the nanosystems enter those cells. Here we use 2 nm (metal core) gold nanoparticles to target human hepatocellular carcinoma (HepG2) cells stably transfected with the SERPINB3 (SB3) protein. The nanoparticles were coated with a 85:15 mixture of thiols featuring, respectively, a phosphoryl choline, to ensure water solubility and biocompatibility, and a 28-mer peptide corresponding to the amino acid sequence 21-47 of the hepatitis B virus-PreS1 protein (PreS1(21-47)). Conjugation of the peptide was performed via the maleimide-thiol reaction in methanol allowing the use of a limited amount of the targeting molecule. This is an efficient procedure also in the perspective of selecting libraries of new targeting agents. The rationale behind the selection of the peptide is that SB3, which is undetectable in normal hepatocytes, is over-expressed in hepatocellular carcinoma and in hepatoblastoma and has been proposed as a target of the hepatitis B virus (HBV). For the latter the key recognition element is the PreS1(21-47) peptide, which is a fragment of one of the proteins composing the viral envelope. The ability of the conjugated nanoparticles to bind the target protein SB3, expressed in liver cancer cells, was investigated by surface plasmon resonance analysis and in vitro via cellular uptake analysis followed by atomic absorption analysis of digested samples. The results showed that the PreS1(21-47) peptide is a suitable targeting agent for cells overexpressing the SB3 protein. Even more important is the evidence that the gold nanoparticles are internalized by the cells. The comparison between the surface plasmon resonance analysis and the cellular uptake studies suggests the presentation of the protein on cell surface is critical for efficient recognition

    Toward Supramolecular Nanozymes for the Photocatalytic Activation of Pt(IV) Anticancer Prodrugs

    Get PDF
    A supramolecular nanozyme for the photocatalytic conversion of a Pt(IV) anticancer complex to cisplatin is described herein. We employed 1.9 nm Au nanoparticles decorated with thiol ligands bearing a TACN (1,4,7-triazacyclononane) headgroup to encapsulate FMN (riboflavin-5'-phosphate). In the presence of an electron donor, flavin-loaded nanoparticles photocatalyzed the reductive activation of the prodrug cis,cis,trans-[Pt(NH3)(2)(Cl-2)(O2CCH2CH2COOH)(2)] to cisplatin, achieving turnover frequency values of 7.4 min(-1).We acknowledge financial support from the Spanish State Research Agency for the grants CTQ2016-80844-R, BIO201677367-R, PID2019-111649RB-I00 and PCI2018-092984. This work was performed under the Severo Ochoa Centres of Excellence and Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency -Grant No. CEX2018-000867-S (DIPC) and MDM-2017-0720 (CIC biomaGUNE). We also thank Fondazione Cariparo (Ricerca Scientifica di Eccellenza Grant "SELECT''). A. M. has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Marie SklodowskaCurie Actions grant no. 793702. We thank the Spanish MultiMetDrugs network (RED2018-102471-T) for fruitful discussion

    Self-Assembled Biocompatible Fluorescent Nanoparticles for Bioimaging

    Get PDF
    Fluorescence is a powerful tool for mapping biological events in real-time with high spatial resolution. Ultra-bright probes are needed in order to achieve high sensitivity: these probes are typically obtained by gathering a huge number of fluorophores in a single nanoparticle (NP). Unfortunately this assembly produces quenching of the fluorescence because of short-range intermolecular interactions. Here we demonstrate that rational structural modification of a well-known molecular fluorophore N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) (NBD) produces fluorophores that self-assemble in nanoparticles in the biocompatible environment without any dramatic decrease of the fluorescence quantum yield. Most importantly, the resulting NP show, in an aqueous environment, a brightness which is more than six orders of magnitude higher than the molecular component in the organic solvent. Moreover, the NP are prepared by nanoprecipitation and they are stabilized only via non-covalent interaction, they are surprisingly stable and can be observed as individual bright spots freely diffusing in solution at a concentration as low as 1 nM. The suitability of the NP as biocompatible fluorescent probes was demonstrated in the case of HeLa cells by fluorescence confocal microscopy and MTS assays
    • 

    corecore