100 research outputs found

    Comparison of agar gel immunodiffusion test, enzyme-linked immunosorbent assay and PCR in diagnostics of enzootic bovine leukosis

    Get PDF
    Bovine leukaemia virus (BLV) is a retrovirus that induces a chronic infection in cattle. Once infected, cattle remain virus carriers for life and start to show an antibody response within a few weeks after infection. Eradication and control of the disease are based on early diagnostics and segregation of the carriers. The choice of a diagnostic method depends on the eradication programme, money resources and characteristics of the herd to be analysed. The agar gel immunodiffusion (AGID) test has been the serological test of choice for routine diagnosis of serum samples. Nevertheless, in more recent years, the enzyme-linked immunosorbent assay (ELISA) has replaced the AGID for large scale testing. For this purpose, commercially available BLV-ELISA kits were compared to the AGID and to the polymerase chain reaction (PCR) method performed with two sets of primers, amplifying env region. The ELISA kit based on the p24 core protein was found to be less specific and served as a screening test. The ELISA kit based on the envelope glycoprotein (gpSI) served as a verification test and gave a good correlation with the AGID test and PCR method. However, ELISA showed a higher sensitivity than AGID. The p24 based ELiSA was useful for screening a large number of samples, whereas gp51 based ELISA, AGID and PCR were more important for detecting the antibody response against the individual BLV-proteins and therefore for verification of the infection with BLV

    Quality assessment of vascular access procedures for hemodialysis: A position paper of the Vascular Access Society based on the analysis of existing guidelines

    Get PDF
    Quality assessment in vascular access procedures for hemodialysis is not clearly defined. The aim of this article is to compare various guidelines regarding recommendation on quality control in angioaccess surgery. The overall population of end-stage renal disease patients and patients in need for hemodialysis treatment is growing every year. Chronic intermittent hemodialysis is still the main therapy. The formation of a functional angioaccess is the cornerstone in the management of those patients. Native (autologous) arteriovenous fistula is the best vascular access available. A relatively high percentage of primary failure and fistula abandonment increases the need for quality control in this field of surgery. There are very few recommendations of quality assessment on creation of a vascular access for hemodialysis in the searched guidelines. Some guidelines recommend the proportion of native arteriovenous fistula in incident and prevalent patients as well as the maximum tolerable percentage of central venous catheters and complications. According to some guidelines, surgeon's experience and expertise have a considerable influence on outcomes. There are no specific recommendations regarding surgeon's specialty, grade, level of skills, and experience. In conclusion, there is a weak recommendation in the guidelines on quality control in vascular access surgery. Quality assessment criteria should be defined in this field of surgery. According to these criteria, patients and nephrologists could choose the best vascular access center or surgeon. Centers with best results should be referral centers, and centers with poorer results should implement quality improvement programs

    Weyl's law and quantum ergodicity for maps with divided phase space

    Full text link
    For a general class of unitary quantum maps, whose underlying classical phase space is divided into several invariant domains of positive measure, we establish analogues of Weyl's law for the distribution of eigenphases. If the map has one ergodic component, and is periodic on the remaining domains, we prove the Schnirelman-Zelditch-Colin de Verdiere Theorem on the equidistribution of eigenfunctions with respect to the ergodic component of the classical map (quantum ergodicity). We apply our main theorems to quantised linked twist maps on the torus. In the Appendix, S. Zelditch connects these studies to some earlier results on `pimpled spheres' in the setting of Riemannian manifolds. The common feature is a divided phase space with a periodic component.Comment: Colour figures. Black & white figures available at http://www2.maths.bris.ac.uk/~majm. Appendix by Steve Zelditc

    Validation of a patient-specific hemodynamic computational model for surgical planning of vascular access in hemodialysis patients

    Get PDF
    Vascular access dysfunction is one of the main causes of morbidity and hospitalization in hemodialysis patients. This major clinical problem points out the need for prediction of hemodynamic changes induced by vascular access surgery. Here we reviewed the potential of a patient-specific computational vascular network model that includes vessel wall remodeling to predict blood flow change within 6 weeks after surgery for different arteriovenous fistula configurations. For model validation, we performed a multicenter, prospective clinical study to collect longitudinal data on arm vasculature before and after surgery. Sixty-three patients with newly created arteriovenous fistula were included in the validation data set and divided into four groups based on fistula configuration. Predicted brachial artery blood flow volumes 40 days after surgery had a significantly high correlation with measured values. Deviation of predicted from measured brachial artery blood flow averaged 3% with a root mean squared error of 19.5%, showing that the computational tool reliably predicted patient-specific blood flow increase resulting from vascular access surgery and subsequent vascular adaptation. This innovative approach may help the surgeon to plan the most appropriate fistula configuration to optimize access blood flow for hemodialysis, potentially reducing the incidence of vascular access dysfunctions and the need of patient hospitalization

    Navier-Stokes Simulation of a Heavy Lift Slowed-Rotor Compound Helicopter Configuration

    Get PDF
    Time accurate numerical simulations were performed using the Reynolds-averaged Navier-Stokes (RANS) flow solver OVERFLOW for a heavy lift, slowed-rotor, compound helicopter configuration, tested at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The primary purpose of these simulations is to provide support for the development of a large field of view Particle Imaging Velocimetry (PIV) flow measurement technique supported by the Subsonic Rotary Wing (SRW) project under the NASA Fundamental Aeronautics program. These simulations provide a better understanding of the rotor and body wake flows and helped to define PIV measurement locations as well as requirements for validation of flow solver codes. The large field PIV system can measure the three-dimensional velocity flow field in a 0.914m by 1.83m plane. PIV measurements were performed upstream and downstream of the vertical tail section and are compared to simulation results. The simulations are also used to better understand the tunnel wall and body/rotor support effects by comparing simulations with and without tunnel floor/ceiling walls and supports. Comparisons are also made to the experimental force and moment data for the body and rotor

    Europe’s wood supply in disruptive times. An evidence-based synthesis report.

    Get PDF
    In the face of climate change, geopolitical disruption, and current demographic developments, the future supply of wood from European forests has become a highly relevant topic of interest for many stakeholders. The urgency of this issue has unveiled itself in recent years more than ever before. It is indispensable that effective measures are implemented already now to respond to current and future changes. However, to enable meaningful actions, a solid evidence base is crucial. Against this background, a group of internationally renowned experts from across a range of scientific backgrounds and disciplines carried out this comprehensive study titled ‘Europe’s wood supply in disruptive times’ in the framework of the science-business platform TEAMING UP 4 FORESTS. When analysing the existing scientific evidence and preparing this study, the authors were guided by the questions identified at Think Tank Meetings and a Stakeholder Dialogue convened by the platform. This study does not only illuminate individual aspects of the availability of wood but also provides an overall picture of multiple factors influencing wood supply and their complex interrelationships. Furthermore, the second part of this publication has a strong implementation-oriented focus which empowers stakeholders to truly put science into practice

    An Early Study on the Mechanisms that Allow Tissue-Engineered Vascular Grafts to Resist Intimal Hyperplasia

    Get PDF
    Intimal hyperplasia is one of the prominent failure mechanisms for arteriovenous fistulas and arteriovenous access grafts. Human tissue-engineered vascular grafts (TEVGs) were implanted as arteriovenous grafts in a novel baboon model. Ultrasound was used to monitor flow rates and vascular diameters throughout the study. Intimal hyperplasia in the outflow vein of TEVGs was assessed at the anastomosis and at juxta-anastomotic regions via histological analysis, and was compared to intimal hyperplasia with polytetrafluoroethylene (PTFE) grafts in the baboon model and in literature reports from other animal models. Less venous intimal hyperplasia was observed in histological sections with arteriovenous TEVGs than with arteriovenous PTFE grafts. TEVGs were associated with a mild, noninflammatory intimal hyperplasia. The extent of intimal tissue that formed with TEVG placement correlated with the rate of blood flow through tissue engineered vascular grafts at 2 weeks postimplant. Outflow vein dilatation was observed with increased flow rate. Both mid-graft flow rates and outflow vein diameters reached a plateau by week 4, which suggested that venous remodeling and intimal hyperplasia largely occurred within the first 4 weeks of implant in the baboon model. Given their compliant and noninflammatory nature, TEVGs appear resistant to triggers for venous intimal hyperplasia that are common for PTFE arteriovenous grafts, including (1) abundant proinflammatory macrophage populations that are associated with PTFE grafts and (2) compliance mismatch between PTFE grafts and the outflow vein. Our findings suggest that arteriovenous TEVGs develop only a mild form of venous intimal hyperplasia, which results from the typical hemodynamic changes that are associated with arteriovenous settings

    Patient-Specific Computational Modeling of Upper Extremity Arteriovenous Fistula Creation: Its Feasibility to Support Clinical Decision-Making

    Get PDF
    <div><h3>Introduction</h3><p>Inadequate flow enhancement on the one hand, and excessive flow enhancement on the other hand, remain frequent complications of arteriovenous fistula (AVF) creation, and hamper hemodialysis therapy in patients with end-stage renal disease. In an effort to reduce these, a patient-specific computational model, capable of predicting postoperative flow, has been developed. The purpose of this study was to determine the accuracy of the patient-specific model and to investigate its feasibility to support decision-making in AVF surgery.</p> <h3>Methods</h3><p>Patient-specific pulse wave propagation models were created for 25 patients awaiting AVF creation. Model input parameters were obtained from clinical measurements and literature. For every patient, a radiocephalic AVF, a brachiocephalic AVF, and a brachiobasilic AVF configuration were simulated and analyzed for their postoperative flow. The most distal configuration with a predicted flow between 400 and 1500 ml/min was considered the preferred location for AVF surgery. The suggestion of the model was compared to the choice of an experienced vascular surgeon. Furthermore, predicted flows were compared to measured postoperative flows.</p> <h3>Results</h3><p>Taken into account the confidence interval (25<sup>th</sup> and 75<sup>th</sup> percentile interval), overlap between predicted and measured postoperative flows was observed in 70% of the patients. Differentiation between upper and lower arm configuration was similar in 76% of the patients, whereas discrimination between two upper arm AVF configurations was more difficult. In 3 patients the surgeon created an upper arm AVF, while model based predictions allowed for lower arm AVF creation, thereby preserving proximal vessels. In one patient early thrombosis in a radiocephalic AVF was observed which might have been indicated by the low predicted postoperative flow.</p> <h3>Conclusions</h3><p>Postoperative flow can be predicted relatively accurately for multiple AVF configurations by using computational modeling. This model may therefore be considered a valuable additional tool in the preoperative work-up of patients awaiting AVF creation.</p> </div

    Key Amino Acid Residues of Ankyrin-Sensitive Phosphatidylethanolamine/Phosphatidylcholine-Lipid Binding Site of βI-Spectrin

    Get PDF
    It was shown previously that an ankyrin-sensitive, phosphatidylethanolamine/phosphatidylcholine (PE/PC) binding site maps to the N-terminal part of the ankyrin-binding domain of β-spectrin (ankBDn). Here we have identified the amino acid residues within this domain which are responsible for recognizing monolayers and bilayers composed of PE/PC mixtures. In vitro binding studies revealed that a quadruple mutant with substituted hydrophobic residues W1771, L1775, M1778 and W1779 not only failed to effectively bind PE/PC, but its residual PE/PC-binding activity was insensitive to inhibition with ankyrin. Structure prediction and analysis, supported by in vitro experiments, suggests that “opening” of the coiled-coil structure underlies the mechanism of this interaction. Experiments on red blood cells and HeLa cells supported the conclusions derived from the model and in vitro lipid-protein interaction results, and showed the potential physiological role of this binding. We postulate that direct interactions between spectrin ankBDn and PE-rich domains play an important role in stabilizing the structure of the spectrin-based membrane skeleton

    Оптимизация конструкции захвата для детали «Барабан»

    Get PDF
    Грузозахватные приспособления обычно применяются при производстве работ по подъему и перемещению грузов с применением грузоподъемных машин. Использование приспособлений позволяет реализовать максимальное удобство и безопасность производственного процесса. Грузозахватные приспособления конструируются для определенного этапа технологического процесса, для конкретного изделия. При проектировании таких приспособлений необходимо учитывать основные показатели оптимальности конструкции: прочность, надежность, простота, удобство и безопасность при эксплуатации, эргономичность. Кроме того, нужно стремиться к наименьшей массе и, соответственно, металлоемкости захвата. Конструкция грузозахватного приспособления, в основном, будет зависеть от назначенных технологом поверхностей, за которые можно крепиться и от максимальной высоты подъема крюка крана. В статье описана задача по конструированию захвата для детали «Барабан¬ в новом технологическом процессе. Рассмотрена конструкция существующего захвата, взятого за прототип. Приведен анализ различных вариантов конструктивных решений, созданных в процессе проектирования. Выбран вариант конструкции захвата, который в наибольшей степени соответствует требованиям технического задания. Конструкция этого модернизированного приспособления представляет собой захват с тремя лапами, удерживающими деталь, и подвес в виде траверсы. Разработанная конструкторская документация утверждена производством и отделом промышленной безопасности
    corecore