189 research outputs found
Successful reprogramming of epiblast stem cells by blocking nuclear localization of β-catenin.
Epiblast stem cells (EpiSCs) in mice and rats are primed pluripotent stem cells (PSCs). They barely contribute to chimeric embryos when injected into blastocysts. Reprogramming of EpiSCs to embryonic stem cell (ESC)-like cells (rESCs) may occur in response to LIF-STAT3 signaling; however, low reprogramming efficiency hampers potential use of rESCs in generating chimeras. Here, we describe dramatic improvement of conversion efficiency from primed to naive-like PSCs through upregulation of E-cadherin in the presence of the cytokine LIF. Analysis revealed that blocking nuclear localization of β-CATENIN with small-molecule inhibitors significantly enhances reprogramming efficiency of mouse EpiSCs. Although activation of Wnt/β-catenin signals has been thought desirable for maintenance of naive PSCs, this study provides the evidence that inhibition of nuclear translocation of β-CATENIN enhances conversion of mouse EpiSCs to naive-like PSCs (rESCs). This affords better understanding of gene regulatory circuits underlying pluripotency and reprogramming of PSCs
The Tsushima leopard cat exhibits extremely low genetic diversity compared with the Korean Amur leopard cat: Implications for conservation
We examined genetic diversity of the wild Tsushima leopard cat—a regional population of the Amur leopard cat—using microsatellite markers. In addition, we compared genetic diversity of the Tsushima leopard cat with that of the Korean population of Amur leopard cat. Although bias should be considered when applying cross-species amplification, the Tsushima leopard cat showed a lower index of molecular genetic diversity than did the Korean population. These results were consistent with those obtained using other genetic markers, such as mitochondrial DNA and Y chromosome sequences. This low genetic diversity of the wild Tsushima leopard cat may be derived from the founding population. Furthermore, our results suggest that the captive populations held in Japanese zoos may show extremely low genetic diversity, leading to difficulties in genetic management of the Tsushima leopard cat. Moreover, the two regional populations were clearly separated using these marker sets. In the present study, we demonstrated that the genetic diversity of the Tsushima leopard cat is extremely low compared with that of the continental regional population. Importantly, the Japanese captive population for ex situ conservation was derived from a founding population with extremely low genetic diversity; hence, we assume that both the captive and wild populations showed extremely low genetic diversities. Our findings emphasize the need to develop carefully considered management strategies for genetic conservation
エピブラスト幹細胞から胚性幹細胞様細胞への効率的変換法の開発
学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 饗場 篤, 東京大学教授 吉田 進昭, 東京大学准教授 佐々木 毅, 東京大学特任教授 渡邉 すみ子, 東京大学特任准教授 齋藤 琢University of Tokyo(東京大学
Level Assignment for Various Photoluminescence Bands of Tm^<3+> Ions in LiYF_4 Crystal
Photoluminescence and excitation spectra of Tm ions in LiYF_4 crystal have been investigated at 12 K. The luminescence is investigated under excitation with lights of 780, 680, 460, 360 and 266 nm wavelengths. The emission bands are observed to depend on the excitation wavelength, e.g. two emission bands at 1229 and 1201 nm are generated by the 460 nm excitation but not by 780, 680, 360 and 266 nm excitation. Comparing the emission spectra with the excitation spectra for the IR and visible emissions, we suggest the level assignment for the observed luminescence bands including the 288 and 286 nm UV emission bands
Scissor lift with real-time self-adjustment ability based on variable gravity compensation mechanism
Most robots involved in vertical movement against gravitation require actuators large enough to support their own weight. To improve the inherent safety of such robots against the large actuators and reduce their energy consumption, numerous gravity compensation mechanisms (GCMs) have been proposed. Our previous study proposed a variable GCM (VGCM) that uses two types of springs and can adjust the compensation force. In this paper, a VGCM-based scissor lift (pantograph lift) that uses three springs and a smaller actuator is proposed. A prototype is designed and fabricated, and the performance of the prototype is evaluated experimentally. The results demonstrate that the developed scissor lift meets the design specifications. In addition, a load estimator is established based on the dynamic model of the scissor lift. A real-time self-adjustment method that automatically changes the compensation force is proposed, and its effectiveness is verified
Lifetime attributable risk of radiation-induced secondary cancer from proton beam therapy compared with that of intensity-modulated X-ray therapy in randomly sampled pediatric cancer patients
To investigate the amount that radiation-induced secondary cancer would be reduced by using proton beam therapy (PBT) in place of intensity-modulated X-ray therapy (IMXT) in pediatric patients, we analyzed lifetime attributable risk (LAR) as an in silico surrogate marker of the secondary cancer after these treatments. From 242 pediatric patients with cancers who were treated with PBT, 26 patients were selected by random sampling after stratification into four categories: (i) brain, head and neck, (ii) thoracic, (iii) abdominal, and (iv) whole craniospinal (WCNS) irradiation. IMXT was replanned using the same computed tomography and region of interest. Using the dose-volume histograms (DVHs) of PBT and IMXT, the LARs of Schneider et al. were calculated for the same patient. All the published dose-response models were tested for the organs at risk. Calculation of the LARs of PBT and IMXT based on the DVHs was feasible for all patients. The means +/- standard deviations of the cumulative LAR difference between PBT and IMXT for the four categories were (i) 1.02 +/- 0.52% (n = 7, P = 0.0021), (ii) 23.3 +/- 17.2% (n = 8, P = 0.0065), (iii) 16.6 +/- 19.9% (n = 8, P = 0.0497) and (iv) 50.0 +/- 21.1% (n = 3, P = 0.0274), respectively (one tailed t-test). The numbers needed to treat (NNT) were (i) 98.0, (ii) 4.3, (iii) 6.0 and (iv) 2.0 for WCNS, respectively. In pediatric patients who had undergone PBT, the LAR of PBT was significantly lower than the LAR of IMXT estimated by in silico modeling. Although a validation study is required, it is suggested that the LAR would be useful as an in silico surrogate marker of secondary cancer induced by different radiotherapy techniques
Abundant Occurrence of Basal Radial Glia in the Subventricular Zone of Embryonic Neocortex of a Lissencephalic Primate, the Common Marmoset Callithrix jacchus
Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor typ
Preliminary results of proton radiotherapy for pediatric rhabdomyosarcoma: a multi-institutional study in Japan
To evaluate preliminary results of proton radiotherapy (PRT) for pediatric patients with rhabdomyosarcoma (RMS). From 1987 to 2014, PRT was conducted as initial radiotherapy in 55 patients (35 males, 20 females, median age 5 years, range 0–19) with RMS at four institutes in Japan. Thirty‐one, 18, and six patients had embryonal, alveolar, and other RMS, respectively. One, 11, 37, and six patients were in IRSG groups I, II, III, and IV, respectively, and the COG risk group was low, intermediate, and high for nine, 39, and seven patients, respectively. The irradiation dose was 36–60 GyE (median: 50.4 GyE). The median follow‐up period was 24.5 months (range: 1.5–320.3). The 1‐ and 2‐year overall survival rates were 91.9% (95% CI: 84.3–99.5%) and 84.8% (95% CI 75.2–94.3%), respectively, and these rates were 100% and 100%, 97.1% and 90.1%, and 57.1% and 42.9% for COG low‐, intermediate‐, and high‐risk groups, respectively. There were 153 adverse events of Grade ≥3, including 141 hematologic toxicities in 48 patients (87%) and 12 radiation‐induced toxicities in nine patients (16%). Proton‐specific toxicity was not observed. PRT has the same treatment effect as photon radiotherapy with tolerable acute radiation‐induced toxicity
Long‐term outcomes of proton therapy for prostate cancer in Japan: a multi‐institutional survey of the Japanese Radiation Oncology Study Group
This is the first multi‐institutional retrospective survey of the long‐term outcomes of proton therapy (PT) for prostate cancer in Japan. This retrospective analysis comprised prostate cancer patients treated with PT at seven centers between January 2008 and December 2011 and was approved by each Institutional Review Board. The NCCN classification was used. Biochemical relapse was based on the Phoenix definition (nadir + 2.0 ng/mL). Toxicities were evaluated with the Common Terminology Criteria for Adverse Events version 4.0. There were 215, 520, and 556 patients in the low‐risk, intermediate‐risk, and high‐risk groups, respectively. The median follow‐up period of surviving patients was 69 months (range: 7–107). Among all patients, 98.8% were treated using a conventional fractionation schedule and 1.2% with a hypofractionation schedule; 58.5% and 21.5% received neoadjuvant and adjuvant androgen deprivation therapy, respectively. The 5‐year biochemical relapse‐free survival (bRFS) and overall survival rates in the low‐risk, intermediate‐risk, and high‐risk groups were 97.0%, 91.1%, and 83.1%, and 98.4%, 96.8%, and 95.2%, respectively. In the multivariate analysis, the NCCN classification was a significant prognostic factor for bRFS, but not overall survival. The incidence rates of grade 2 or more severe late gastrointestinal and genitourinary toxicities were 4.1% and 4.0%, retrospectively. This retrospective analysis of a multi‐institutional survey suggested that PT is effective and well‐tolerated for prostate cancer. Based on this result, a multi‐institutional prospective clinical trial (UMIN000025453) on PT for prostate cancer has just been initiated in order to define its role in Japan
Particle therapy for prostate cancer: The past, present and future
Although prostate cancer control using radiotherapy is dose‐dependent, dose–volume effects on late toxicities in organs at risk, such as the rectum and bladder, have been observed. Both protons and carbon ions offer advantageous physical properties for radiotherapy, and create favorable dose distributions using fewer portals compared with photon‐based radiotherapy. Thus, particle beam therapy using protons and carbon ions theoretically seems suitable for dose escalation and reduced risk of toxicity. However, it is difficult to evaluate the superiority of particle beam radiotherapy over photon beam radiotherapy for prostate cancer, as no clinical trials have directly compared the outcomes between the two types of therapy due to the limited number of facilities using particle beam therapy. The Japanese Society for Radiation Oncology organized a joint effort among research groups to establish standardized treatment policies and indications for particle beam therapy according to disease, and multicenter prospective studies have been planned for several common cancers. Clinical trials of proton beam therapy for intermediate‐risk prostate cancer and carbon‐ion therapy for high‐risk prostate cancer have already begun. As particle beam therapy for prostate cancer is covered by the Japanese national health insurance system as of April 2018, and the number of facilities practicing particle beam therapy has increased recently, the number of prostate cancer patients treated with particle beam therapy in Japan is expected to increase drastically. Here, we review the results from studies of particle beam therapy for prostate cancer and discuss future developments in this field
- …