153 research outputs found

    Muscle fiber-type distribution predicts weight gain and unfavorable left ventricular geometry: a 19 year follow-up study

    Get PDF
    BACKGROUND: Skeletal muscle consists of type-I (slow-twitch) and type-II (fast-twitch) fibers, with proportions highly variable between individuals and mostly determined by genetic factors. Cross-sectional studies have associated low percentage of type-I fibers (type-I%) with many cardiovascular risk factors. METHODS: We investigated whether baseline type-I% predicts left ventricular (LV) structure and function at 19-year follow-up, and if so, which are the strongest mediating factors. At baseline in 1984 muscle fiber-type distribution (by actomyosin ATPase staining) was studied in 63 healthy men (aged 32–58 years). The follow-up in 2003 included echocardiography, measurement of obesity related variables, physical activity and blood pressure. RESULTS: In the 40 men not using cardiovascular drugs at follow-up, low type-I% predicted higher heart rate, blood pressure, and LV fractional shortening suggesting increased sympathetic tone. Low type-I% predicted smaller LV chamber diameters (P ≤ 0.009) and greater relative wall thickness (P = 0.034) without increase in LV mass (concentric remodeling). This was explained by the association of type-I% with obesity related variables. Type-I% was an independent predictor of follow-up body fat percentage, waist/hip ratio, weight gain in adulthood, and physical activity (in all P ≤ 0.001). After including these risk factors in the regression models, weight gain was the strongest predictor of LV geometry explaining 64% of the variation in LV end-diastolic diameter, 72% in end-systolic diameter, and 53% in relative wall thickness. CONCLUSION: Low type-I% predicts obesity and weight gain especially in the mid-abdomen, and consequently unfavourable LV geometry indicating increased cardiovascular risk

    Assessment of post-competition peak blood lactate in male and female master swimmers aged 40–79 years and its relationship with swimming performance

    Get PDF
    The main purpose of this study was to measure the postcompetition blood lactate concentration ([La]b) in master swimmers of both sexes aged between 40 and 79 years in order to relate it to age and swimming performance. One hundred and eight swimmers participating in the World Master Championships were assessed for [La]b and the average rate of lactate accumulation (La’;mmol l-1 s-1) was calculated. In addition, 77 of them were also tested for anthropometric measures. When the subjects were divided into 10-year age groups, males exhibited higher [La]b than women (factorial ANOVA, P < 0.01) and a steeper decline with ageing than female subjects. Overall, mean values (SD) of [La]b were 10.8 (2.8), 10.3 (2.0), 10.3 (1.9), 8.9 (3.2) mmol l-1 in women, and 14.2 (2.5), 12.4 (2.5), 11.0 (1.6), 8.2 (2.0) mmol l-1 in men for, respectively, 40–49, 50–59, 60–69, 70–79 years’ age groups. When, however, [La]b values were normalised for a ‘‘speed index’’, which takes into account swimming speed as a percentage of world record, these sex-related differences, although still present, were considerably attenuated. Furthermore, the differences in La’ between males and females were larger in the 40–49 age group (0.34 vs 0.20 mmol l-1 s-1 for 50-m distance) than in the 70–79 age group (0.12 vs 0.14 mmol l-1 s-1 for 50-m distance). Different physiological factors, supported by the considered anthropometric measurements, are suggested to explain the results

    The between and within day variation in gross efficiency

    Get PDF
    Before the influence of divergent factors on gross efficiency (GE) [the ratio of mechanical power output (PO) to metabolic power input (PI)] can be assessed, the variation in GE between days, i.e. the test–retest reliability, and the within day variation needs to be known. Physically active males (n = 18) performed a maximal incremental exercise test to obtain VO2max and PO at VO2max (PVO2max), and three experimental testing days, consisting of seven submaximal exercise bouts evenly distributed over the 24 h of the day. Each submaximal exercise bout consisted of six min cycling at 45, 55 and 65% PVO2max, during which VO2 and RER were measured. GE was determined from the final 3 min of each exercise intensity with: GE = (PO/PI) × 100%. PI was calculated by multiplying VO2 with the oxygen equivalent. GE measured during the individually highest exercise intensity with RER <1.0 did not differ significantly between days (F = 2.70, p = 0.08), which resulted in lower and upper boundaries of the 95% limits of agreement of 19.6 and 20.8%, respectively, around a mean GE of 20.2%. Although there were minor within day variations in GE, differences in GE over the day were not significant (F = 0.16, p = 0.99). The measurement of GE during cycling at intensities approximating VT is apparently very robust, a change in GE of ~0.6% can be reliably detected. Lastly, GE does not display a circadian rhythm so long as the criteria of a steady-state VO2 and RER <1.0 are applied

    Bone mineral density and body composition in postmenopausal women with psoriasis and psoriatic arthritis

    Get PDF
    Introduction: the aim of the present study was to compare bone mineral density (BMD) and body composition (BC) measurements as well as identify risk factors for low BMD and osteoporotic fractures in postmenopausal women with psoriasis (Ps) and psoriatic arthritis (PsA).Methods: A cross-sectional study was carried out in 45 PsA women, 52 Ps women and 98 healthy female controls (HC). Clinical risk factors for low bone density and osteoporotic fracture were evaluated by a specific questionnaire. An X-ray absorptiometry (DXA) at the lumbar spine, total femur and total body was performed on all patients. Skin and joint outcomes were measured by specific tools (PASI, HAQ and DAS28). Morphometric vertebral fractures were evaluated by lumbar and thoracic spine X-ray, according to Genant's method.Results: There were no significant differences in age, body mass index (BMI), total lean mass and bone mineral density among the groups. However, the PsA group had a significantly higher body fat percentage (BF%) than the Ps and HC groups. Osteoporotic fractures were more frequently observed in PsA and Ps groups than in the HC group (P = 0.01). Recurrent falls and a longer duration of disease increased the risk of fracture (odds ratio (OR) = 18.3 and 1.08, respectively) in the PsA group (P = 0.02). Disability was the main factor related to osteoporotic fracture in the Ps group (odds ratio (OR) = 11.1) (P = 0.02).Conclusions: Ps and PsA patients did not present lower BMD. However, they had a higher prevalence of osteoporotic fractures and higher risk of metabolic syndrome. Patients with a longer duration of disease, disability and recurrent falls need preventive measures.Rheumatology Division at UNIFESP/EPMUniversidade Federal de São Paulo, UNIFESP Paulista Sch Med, Div Rheumatol, EPM, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, UNIFESP Paulista Sch Med, Div Rheumatol, EPM, BR-04023900 São Paulo, BrazilWeb of Scienc

    Characteristics of fast voluntary and electrically evoked isometric knee extensions during 56 days of bed rest with and without exercise countermeasure

    Get PDF
    The contractile characteristics of fast voluntary and electrically evoked unilateral isometric knee extensions were followed in 16 healthy men during 56 days of horizontal bed rest and assessed at bed rest days 4, 7, 10, 17, 24, 38 and 56. Subjects were randomized to either an inactive control group (Ctrl, n = 8) or a resistive vibration exercise countermeasure group (RVE, n = 8). No changes were observed in neural activation, indicated by the amplitude of the surface electromyogram, or the initial rate of voluntary torque development in either group during bed rest. In contrast, for Ctrl, the force oscillation amplitude at 10 Hz stimulation increased by 48% (P < 0.01), the time to reach peak torque at 300 Hz stimulation decreased by 7% (P < 0.01), and the half relaxation time at 150 Hz stimulation tended to be slightly reduced by 3% (P = 0.056) after 56 days of bed rest. No changes were observed for RVE. Torque production at 10 Hz stimulation relative to maximal (150 Hz) stimulation was increased after bed rest for both Ctrl (15%; P < 0.05) and RVE (41%; P < 0.05). In conclusion, bed rest without exercise countermeasure resulted in intrinsic speed properties of a faster knee extensor group, which may have partly contributed to the preserved ability to perform fast voluntary contractions. The changes in intrinsic contractile properties were prevented by resistive vibration exercise, and voluntary motor performance remained unaltered for RVE subjects as well

    Changes in muscle contractile characteristics and jump height following 24 days of unilateral lower limb suspension

    Get PDF
    We measured changes in maximal voluntary and electrically evoked torque and rate of torque development because of limb unloading. We investigated whether these changes during single joint isometric muscle contractions were related to changes in jump performance involving dynamic muscle contractions and several joints. Six healthy male subjects (21 ± 1 years) underwent 3 weeks of unilateral lower limb suspension (ULLS) of the right limb. Plantar flexor and knee extensor maximal voluntary contraction (MVC) torque and maximal rate of torque development (MRTD), voluntary activation, and maximal triplet torque (thigh; 3 pulses at 300 Hz) were measured next to squat jump height before and after ULLS. MVC of plantar flexors and knee extensors (MVCke) and triplet torque decreased by 12% (P = 0.012), 21% (P = 0.001) and 11% (P = 0.016), respectively. Voluntary activation did not change (P = 0.192). Absolute MRTD during voluntary contractions decreased for plantar flexors (by 17%, P = 0.027) but not for knee extensors (P = 0.154). Absolute triplet MRTD decreased by 17% (P = 0.048). The reduction in MRTD disappeared following normalization to MVC. Jump height with the previously unloaded leg decreased significantly by 28%. No significant relationships were found between any muscle variable and jump height (r < 0.48), but decreases in torque were (triplet, r = 0.83, P = 0.04) or tended to be (MVCke r = 0.71, P = 0.11) related to decreases in jump height. Thus, reductions in isometric muscle torque following 3 weeks of limb unloading were significantly related to decreases in the more complex jump task, although torque in itself (without intervention) was not related to jump performance

    The role of resveratrol on skeletal muscle cell differentiation and myotube hypertrophy during glucose restriction

    Get PDF
    Glucose restriction (GR) impairs muscle cell differentiation and evokes myotube atrophy. Resveratrol treatment in skeletal muscle cells improves inflammatory-induced reductions in skeletal muscle cell differentiation. We therefore hypothesised that resveratrol treatment would improve muscle cell differentiation and myotube hypertrophy in differentiating C2C12 myoblasts and mature myotubes during GR. Glucose restriction at 0.6 g/L (3.3 mM) blocked differentiation and myotube hypertrophy versus high-glucose (4.5 g/L or 25 mM) differentiation media (DM) conditions universally used for myoblast culture. Resveratrol (10 μM) treatment increased SIRT1 phosphorylation in DM conditions, yet did not improve differentiation when administered to differentiating myoblasts in GR conditions. Resveratrol did evoke increases in hypertrophy of mature myotubes under DM conditions with corresponding elevated Igf-I and Myhc7 gene expression, coding for the ‘slow’ type I MYHC protein isoform. Inhibition of SIRT1 via EX-527 administration (100 nM) also reduced myotube diameter and area in DM conditions and resulted in lower gene expression of Myhc 1, 2 and 4 coding for ‘intermediate’ and ‘faster’ IIx, IIa and IIb protein isoforms, respectively. Resveratrol treatment did not appear to modulate phosphorylation of energy-sensing protein AMPK or protein translation initiator P70S6K. Importantly, in mature myotubes, resveratrol treatment was able to ameliorate reduced myotube growth in GR conditions over an acute 24-h period, but not over 48–72 h. Overall, resveratrol evoked myotube hypertrophy in DM conditions while favouring ‘slower’ Myhc gene expression and acutely ameliorated impaired myotube growth observed during glucose restriction

    Striking Denervation of Neuromuscular Junctions without Lumbar Motoneuron Loss in Geriatric Mouse Muscle

    Get PDF
    Reasons for the progressive age-related loss of skeletal muscle mass and function, namely sarcopenia, are complex. Few studies describe sarcopenia in mice, although this species is the mammalian model of choice for genetic intervention and development of pharmaceutical interventions for muscle degeneration. One factor, important to sarcopenia-associated neuromuscular change, is myofibre denervation. Here we describe the morphology of the neuromuscular compartment in young (3 month) compared to geriatric (29 month) old female C57Bl/6J mice. There was no significant difference in the size or number of motoneuron cell bodies at the lumbar level (L1–L5) of the spinal cord at 3 and 29 months. However, in geriatric mice, there was a striking increase (by ∼2.5 fold) in the percentage of fully denervated neuromuscular junctions (NMJs) and associated deterioration of Schwann cells in fast extensor digitorum longus (EDL), but not in slow soleus muscles. There were also distinct changes in myofibre composition of lower limb muscles (tibialis anterior (TA) and soleus) with a shift at 29 months to a faster phenotype in fast TA muscle and to a slower phenotype in slow soleus muscle. Overall, we demonstrate complex changes at the NMJ and muscle levels in geriatric mice that occur despite the maintenance of motoneuron cell bodies in the spinal cord. The challenge is to identify which components of the neuromuscular system are primarily responsible for the marked changes within the NMJ and muscle, in order to selectively target future interventions to reduce sarcopenia
    corecore