4,168 research outputs found
Base and surge strategies for controlling environmental and economic costs in logistics triads
The aim of this paper is to determine the extent to which it is possible to establish a ‘base’ and ‘surge’ strategy for logistics provision with a particular emphasis on minimising environmental and economic costs. Our method is the combination of empirical research outputs on the impact of uncertainty on economic and environmental costs, and a synthesis of the literature on resilience and the role of flexibility therein. We find that logistics planners either build contingents into their schedules (a priori) or that they respond with contingencies (a posteriori). The former is associated with a ‘base‘ approach; an example of which may be the incorporation of ‘slack time‘ into a schedule to accommodate expected delays due to road congestion. The latter is equivalent to a ‘surge‘ approach where as an example the logistics provider may have capacity flexibility, in the form of spare vehicles, to accommodate post-plan changes in shipper volume requirements. This paper explicitly rationalises the links between uncertainty, ‘base’ and ‘surge’ supply chain strategies, and the strategic use of logistics flexibility, in minimising environmental and economic costs in a logistics triad. The output is in the form of a conceptual managerial feedback control system
Semi-parametric seasonal unit root tests
We extend the M class of unit root tests introduced by Stock (1999, Cointegration, Causality and Forecasting. A Festschrift in Honour of Clive W.J. Granger. Oxford University Press), Perron and Ng (1996, Review of Economic Studies 63, 435–463) and Ng and Perron (2001, Econometrica 69, 1519–1554) to the seasonal case, thereby developing semi-parametric alternatives to the regression-based augmented seasonal unit root tests of Hylleberg, Engle, Granger, and Yoo (1990, Journal of Econometrics 44, 215–238). The success of this class of unit root tests to deliver good finite sample size control even in the most problematic (near-cancellation) case where the shocks contain a strong negative moving average component is shown to carry over to the seasonal case as is the superior size/power trade-off offered by these tests relative to other available tests
A Novel High Frequency Encoding Algorithm for Image Compression
In this paper a new method for image compression is proposed whose quality is demonstrated through accurate 3D reconstruction from 2D images. The method is based on the Discrete Cosine Transform (DCT) together with a high frequency minimization encoding algorithm at compression stage and a new concurrent binary search algorithm at decompression stage. The proposed compression method consists of five main steps: (1) Divide the image into blocks and apply DCT to each block; (2) Apply a high frequency minimization method to the AC-coefficients reducing each block by 2/3 resulting in a Minimized Array; (3) Build a look up table of probability data to enable the recovery of the original high frequencies at decompression stage; (4) Apply a delta or differential operator to the list of DC-components; and (5) Apply arithmetic encoding to the outputs of steps (2) and (4). At decompression stage, the look up table and the concurrent binary search algorithm are used to reconstruct all high frequency AC-coefficients while the DC-components are decoded by reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested the technique by compressing and decompressing 2D images including images with structured light patterns for 3D reconstruction. The technique is compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D surface reconstruction from images, it is demonstrated that the proposed method is superior to both JPEG and JPEG2000
A novel 2D image compression algorithm based on two levels DWT and DCT transforms with enhanced minimize-matrix-size algorithm for high resolution structured light 3D surface reconstruction
Image compression techniques are widely used in 2D and 3D image and video sequences. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level Discrete Wavelet Transform (DWT) and a two level Discrete Cosine Transform (DCT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of 4 steps: 1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix respectively; 2) apply a second level DCT to the DC-Matrix to generate two arrays, namely nonzero-array and zero-array; 3) apply the Minimize-Matrix-Size (MMS) algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT; 4) apply arithmetic coding to the output of previous steps. A novel Fast-Match-Search (FMS) decompression algorithm is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined into one matrix followed by inverse two level DCT with two level DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D RMSE following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D
Environmental Costs of Government-Sponsored Agrarian Settlements in Brazilian Amazonia
Brazil has presided over the most comprehensive agrarian reform frontier colonization program on Earth, in which ~1.2 million settlers have been translocated by successive governments since the 1970's, mostly into forested hinterlands of Brazilian Amazonia. These settlements encompass 5.3% of this ~5 million km2 region, but have contributed with 13.5% of all land conversion into agropastoral land uses. The Brazilian Federal Agrarian Agency (INCRA) has repeatedly claimed that deforestation in these areas largely predates the sanctioned arrival of new settlers. Here, we quantify rates of natural vegetation conversion across 1911 agrarian settlements allocated to 568 Amazonian counties and compare fire incidence and deforestation rates before and after the official occupation of settlements by migrant farmers. The timing and spatial distribution of deforestation and fires in our analysis provides irrefutable chronological and spatially explicit evidence of agropastoral conversion both inside and immediately outside agrarian settlements over the last decade. Deforestation rates are strongly related to local human population density and road access to regional markets. Agrarian settlements consistently accelerated rates of deforestation and fires, compared to neighboring areas outside settlements, but within the same counties. Relocated smallholders allocated to forest areas undoubtedly operate as pivotal agents of deforestation, and most of the forest clearance occurs in the aftermath of government-induced migration
Midgut microbiota of the malaria mosquito vector Anopheles gambiae and Interactions with plasmodium falciparum Infection
The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.Institut de Recherche pour le Developpement (IRD); French Agence Nationale pour la Recherche [ANR-11-BSV7-009-01]; European Community [242095, 223601]info:eu-repo/semantics/publishedVersio
The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria
Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel
IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages.
CD4+ T cells are crucial to the development of CD8+ T cell responses against hepatocytes infected with malaria parasites. In the absence of CD4+ T cells, CD8+ T cells initiate a seemingly normal differentiation and proliferation during the first few days after immunization. However, this response fails to develop further and is reduced by more than 90%, compared to that observed in the presence of CD4+ T cells. We report here that interleukin-4 (IL-4) secreted by CD4+ T cells is essential to the full development of this CD8+ T cell response. This is the first demonstration that IL-4 is a mediator of CD4/CD8 cross-talk leading to the development of immunity against an infectious pathogen
Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC
Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised
Omental whirl associated with bilateral inguinal hernia: a case report
INTRODUCTION: Torsion of the omentum is a rare cause of abdominal pain. It is clinically similar to common causes of acute surgical abdomen and is often diagnosed during surgery. Inguinal hernia is a common condition but not frequently related with torsion of the omentum.
CASE PRESENTATION: A 40-year-old Caucasian man came to our emergency department with abdominal pain of the left quadrant and abdominal distension for 2 days. His medical history included an untreated left inguinal hernia in the last year. Computed tomography revealed densification of mesocolon with left omentum "whirl" component and other signs of omental torsion. During an exploratory laparoscopy, a wide twist of his omentum with necrotic alterations that extended to the bilateral inguinal hernial content was observed. Omentectomy and surgical repair of bilateral inguinal hernia were performed.
CONCLUSIONS: Torsion of the omentum is a rare entity and usually presents a diagnostic challenge. The use of abdominal computed tomography can help diagnosing torsion of the omentum preoperatively and, thus, prevents a surgical approach. Nonetheless, some cases of torsion of the omentum require surgical repair. Accordingly, a laparoscopic approach is minimally invasive and efficient in performing omentectomy.(undefined
- …
