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Abstract

We extend the M class of unit root tests introduced by Stock (1999), Perron and Ng
(1996) and Ng and Perron (2001) to the seasonal case, thereby developing semi-parametric
alternatives to the regression-based augmented seasonal unit root tests of Hylleberg et al.
(1990). The success of this class of unit root tests to deliver good finite sample size control
even in the most problematic (near-cancellation) case where the shocks contain a strong
negative moving average component is shown to carry over to the seasonal case as is the

superior size/power trade-off offered by these tests relative to other available tests.
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1 Introduction

Augmented Dickey-Fuller [ADF] unit root tests are known to suffer significant size distortions
when a near-cancellation region caused by a strong negative moving average behaviour is present
in the driving shocks. Although increasing the augmentation lag length can mitigate these
distortions, a finite sample trade-off occurs with power under the alternative also decreased the
greater the lag length used. In discussing ADF tests, Haldrup and Jansson (2006, p.267) argue
that “... practitioners ought to abandon the use of these tests...” in favour of the M tests because
of “... the excellent size properties and ‘nearly’ optimal power properties” of the latter. The M
class of tests, proposed in Stock (1999) and further developed by Perron and Ng (1996) and Ng
and Perron (2001), account for weak dependence in the shocks via a non-parametric estimate
of the long run variance, rather than parametric lag augmentation. Ng and Perron (2001) show
that M tests based on autoregressive spectral density [ASD] estimators implemented with a
modified Akaike information criterion [MAIC] to select the lag length perform particularly well

even in the presence of strong negative moving average components.
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Hylleberg et al. (1990) [HEGY] propose a seasonal generalisation of the ADF unit root
test allowing the practitioner to test for unit root behaviour at each of the zero and seasonal
frequencies. The HEGY tests, like ADF tests, use parametric lag augmentation, to account for
weak dependence in the shocks. However, it has been known since the seminal work of Box
and Jenkins (1976) that seasonal time series often display significant negative moving average
behaviour at the seasonal lag effecting near cancellation regions at both the zero and seasonal
frequencies. ARMA behaviour can also be a manifestation of neglected periodic autoregressive
behaviour (see, for example, Ghysels and Osborn, 2001, Ch.6). The robustness of seasonal unit
root tests to moving average behaviour is therefore a matter of significant practical relevance and
simulation evidence suggests that, like the ADF tests, the HEGY tests can be badly oversized
in the presence of negative moving averages; see, for example, del Barrio Castro et al. (2016).

Motivated by these issues and the success of the non-seasonal M tests, our purpose is
to develop a new class of semi-parametric seasonal unit root tests based on the M testing
approach. In the case of tests at the harmonic seasonal frequencies we show that this requires
the use of methods based on demodulated processes. The seasonal M-type tests proposed are
based on statistics which correct for weak dependence in the shocks using seasonal long run
variance estimates, either sum-of-covariances-based or ASD-based, of the spectrum at the zero
and seasonal frequencies. Our analysis explicitly allows for the presence of ARM A shocks.
We demonstrate that the limiting distributions of our proposed M statistics are pivotal under
both the null hypothesis and under near-integrated alternatives. Where ASD estimators are
used, a seasonal analogue of the MAIC criterion of Ng and Perron (2001), developed in del
Barrio Castro et al. (2016), can be used to select the lag length, and consistent with the non-
seasonal case, we find in a simulation study that the resulting M tests can deliver significant
improvements over augmented HEGY tests.

The remainder of the paper is organised as follows. Section 2 reviews the seasonal model
and the seasonal unit root testing framework. Section 3 outlines our proposed class of seasonal
M unit root tests while section 4 details their large sample properties. Section 5 presents a
Monte Carlo comparison of the finite sample properties of the HEGY and seasonal M tests.
Section 6 concludes. Supporting material can be found in a Supplementary Appendix available

at Cambridge Journals Online (journals.cambridge.org/ect).

2 The Seasonal Unit Root Framework

2.1 The Seasonal Model

Consider the univariate seasonal time-series process {ysn+s}, observed with constant seasonal

periodicity, S, S € {1,2,...}, which satisfies the following data generating process [DGP]
YSn+s = TSn+s T USn+ts (213)
a(L)rsnts = Usnts, S=1—2S5,....,0, n=1,2,...,N (2.1b)
where pgy+s is a purely deterministic component, further details on which are given below, and

alz) =1-— Zle a;zj, is an AR(S) polynomial in the conventional lag operator, L. In what



follows we define the total sample size to be T := SN and the number of harmonic seasonal
frequencies to be S* := [(S — 1)/2], where |.| denotes the integer part of its argument.
We assume that {ugn+s} in (2.1b) satisfies the following conditions:

Assumption 1: The error term ug, s in (2.1b) follows the linear process ugy+s = ¥(L)egn+s,
where egp,+5 is I1D(0,02) with finite fourth order moments and where 9(2) := 1 + > e iz
satisfies: (i) v(exp {£i27k/S}) # 0, k = 0,..., [S/2]; and (i) D72, j[))| < oo

Assumption 1 ensures that the spectral density function of ug,1s is bounded, and that
it is strictly positive at both the zero and seasonal spectral frequencies, wy := 27k/S, k =
0,...,[.S/2]. Under Assumption 1 the long run variance of ug,;s may be defined as A} :=
o2(1)? = v + 2377217, where v = E(usnisusnts—j), j = 0,1,.... Notice that A2 =
27 f,(0), where f,(w) denotes the spectrum of {ugn4s}. Analogous quantities can be de-
fined at the Nyquist, wg/, = 7, frequency, where S is even, as )\%/2 = U§¢(—1)2 = 5 +
2372 cos[mj]v;, and at the seasonal harmonic frequencies, (w, 27 —wy), as A= 02(ai+b3) =
Yo+ 2372, cos [wij] vy, b =1,..., 8% where ay, := Im([exp(iwy)]) and by, := Re(¢[exp(iwg)]),
k=1,..,5% with Re(:) and Zm(-) denoting the real and imaginary parts of their arguments,
respectively. Notice that )‘é/z =27 f,(7) and A2 = 27 f,(27k/S), k= 1,..., S*.

For the deterministic component in (2.1a), psn+s = 0’'25n4s,¢, we consider three empirically
relevant cases (£ = 1,2,3). Here and in what follows, it is understood that terms relating to
frequency 7 are to be omitted when S is odd and that where reference is made to the Nyquist

frequency this is understood only to apply where .S is even.

Case 1: Zero and seasonal frequency intercepts: zgnys1 := [1,cos(2m(Sn +s)/S),sin(27(Sn +
5)/89), ...,cos(2mS*(Sn + 5)/9),sin(2w5*(Sn + 5)/9), (—1)5"+5.

Case 2: Zero and seasonal frequency intercepts, zero frequency trend: zgn1s2 1= [2, te1r Nt
s]'.
Case 3: Zero and seasonal frequency intercepts and trends: zgy 143 := [2g, 1,1, (Sn+s)2%, 1]

Following Elliot, Rothenberg and Stock (1996), Rodrigues and Taylor (2007) and Jansson
and Nielsen (2011), the initial conditions, z1_g, ..., xg, are taken to be of op(Tl/Q). Relaxing
this will not alter the limiting null distributions of the test statistics we outline in this paper

due to their exact similarity with respect to the initial conditions; see Smith et al. (2009).

2.2 The Seasonal Unit Root Hypotheses

The Sth order polynomial «(L) in (2.1b) can be factorised at the zero and seasonal spectral
frequencies, wg, k =0,...,[S/2], so that a(L) = ,Ei/ow wk (L), where wo (L) := (1 — apL) as-
sociates the parameter ag with the zero frequency (wy = 0), wi(L) := {1 — 2[ay cos(wg) —
Brsin(wy)]L + (af + B2)L?} corresponds to the conjugate (harmonic) seasonal frequencies
(wk, 2T — wy), with the associated parameters oy and S, k = 1,...,5%, and wgs (L) =
(1 + a S/QL) which associates the a,g/; parameter with the Nyquist frequency (wg /2 = ).



Our interest centers on testing the (|.S/2] + 1) unit root null hypotheses,
Hop:ap=1, Hys/0:agp =1, Hop:ar=1, pr=0, k=1,...,5" (2.2)

such that Ho o corresponds to a unit root at the zero frequency, while H g/, yields a unit root
at the Nyquist frequency, and finally Hy j, k = 1,..., 5", yields a pair of complex conjugate unit
roots at the harmonic seasonal frequencies (wg, 2m — wy). Asymptotic power will be considered

under the corresponding local alternatives hypotheses; i.e.,

Hic o5 =exp (%)= (1+ %), j=0,5/2,
(2.3)
Hl,ck:ak:exp(%)%(l—i—%)ﬁﬂkzo, k=1,...,5"

where ¢, k =0,...,|S/2] are fixed constants. Under H; ., the process {ysn+s} admits either
a single root (k = 0,5/2) or a pair of complex conjugate roots (k = 1,...,5*) with modulus in
the neighbourhood of unity at frequency wy. These roots are stable for ¢ < 0 and explosive for
¢ > 0. Notice that Hy ., reduces to Ho where ¢, =0, k =0,...,[S/2]. In what follows, let
c := (co,c1, -, ¢g/2])" be the ([S/2] 4 1)-vector of non-centrality parameters and denote the
lag polynomial (L) under Hj ¢ := ﬂlﬁ/gJHl’ck as A¢gi=1— Zle oz;Lj.

2.3 Seasonal Unit Root Test Regressions

We conclude this section by briefly outlining the regression-based HEGY approach to testing
for seasonal unit roots in a(L). A number of objects defined in so doing will also be needed for
the subsequent development of our M seasonal unit root tests in section 3.

First the data are de-trended to give exact invariance to the parameters characterising psn+s
in (2.1a); this step will also be required for the seasonal M tests. To that end, we define the de-
trended data series generically as ygn 4o 1= YSnts — 5 Zsn+s,e Where § =1, 2 and 3 corresponds
to the deterministic kernels defined in Cases 1, 2 and 3 above. For OLS de-trending, § is the
OLS estimator from regressing ys,ts onto zgn+ts¢, while, as in Rodrigues and Taylor (2007),

for local GLS de-trending $ obtains from the OLS regression of yc on z¢ ¢, where

/
Ve = (Yy1-5,Y2-5 — OTY1-5,Y3-5 — QTY2-5 — QSY1_5, ..., Yo — OTY—1 — - — AY1-5, Acy1, .- AcYr)
Zeg = (Z1-56,22-85,¢ — QT21-8¢, 23S — O]Z2_§¢ — QG21_G¢, .-y 206 — QJZ16 — =

/
— agzl,s,g, Aczl’g, ceuy ACZT{)

for ¢ = ¢ := (¢, ¢1,...,¢|5/2])'- The local GLS de-trending parameters, ¢, k = 0, ..., S/2],
are determined by the significance level that the seasonal unit root tests are to be run at and
the de-trending scheme employed; see Rodrigues and Taylor (2007, p.556). For example, under
Case 1 for tests run at the 5% level, ¢o = ¢g/o = —7 and ¢ = —3.75, k = 1,...,5*. The
resulting de-trended series satisfies a(L)ygnJrs = ugsnﬂ with ugnH = w(L)EgnJrS, where ugnJrS

and 5%71 + are the correspondingly de-trended versions of ugn+s and €gy,+s, respectively.



The HEGY approach then consists of taking an expansion around the zero and seasonal

frequency unit roots exp(+i27k/S), k =0, ..., | S/2] to obtain the augmented HEGY regression:

15/2] p*
Asygms = Z ”kyk Snts—1 T Z ”*yfsms 1t Z ¢;A5?Jgn+s—j + ugn-i-s,p* (2.4)

j=1
where AS =1-L", yi Snts = ZZ-S:_OI cos|(i + 1)wk]y§n+s_i, k=0,..,|S/2], and, yfsnﬂ_l =
— Z "0 'sin[(i + 1)w]]ysn +o_i- An un-augmented version of the HEGY regression obtains by

setting p* = 0 in (2.4); that is, omitting the lagged dependent variables from the regression.

As outlined in section S.3 of the accompanying supplement, the so-called HEGY tests for
testing Ho, Hos/2 and Hog, k = 1,...,5%, can be formulated as standard ¢- and F-tests for
mo = 0 (denoted tp), mg/2 = 0 (denoted tg/5) and 7 = 7 = 0 (denoted Fy), k = 1,..., 5%,
respectively, in (2.4). Joint tests for Hy := ﬁLS/QJHO,k (denoted Fp._ |g/2)) and Hogeas =
ﬁki/fj Hy ), (denoted Fi . s)2 J) can also be performed. In section S.5 of the supplementary
appendix we also detail how the non-seasonal Phillips and Perron (1988) [PP] unit root testing
principle can be implemented to test for zero and seasonal frequency unit roots in seasonally

observed data based on estimating the un-augmented form of (2.4).

3 M-Type Seasonal Unit Root Tests

In this section we propose semi-parametric seasonal unit root tests based on generalising the
non-seasonal M unit root tests to the seasonal case. In section 3.1, as background material, we

first briefly review the trinity of non-seasonal M unit root tests.

3.1 Non-Seasonal M Unit Root Tests

For the non-seasonal (S = 1) case, Perron and Ng (1996), Stock (1999) and Ng and Perron
(2001) define the trinity of so-called M unit root test statistics as follows:

T 05)? - 45)°] - A3
212 Zt:l(ytfl)Q

T 1/2
MEZ, = , MSBg = (TZZ(yf_l)Q/xg> (3.1)
n=1
and MZ;, := MZ, x MSBy, where 5\% is a consistent estimator of the long run variance,
A3. Stock (1999) shows that the first of these statistics, MZy, can be re-written! as MZ, =
Zy + L(70)%, where Z, := T#y — M(T‘2 Zthl(yffl)Q)_l is the non-seasonal coefficient-
based PP unit root test, where 7y and 4 are the OLS estimate of my and the OLS residual
variance estimate, respectively, from (2.4) with p* = 0 when S = 1 (i.e. an un-augmented
Dickey-Fuller regression). It can therefore be seen to be a modified version of the PP non-
seasonal unit root test statistic, Zy. These two statistics are asymptotically equivalent under
Hj .. The second statistic, MSBy, can be used as a basis for a unit root test by noting that the

sums of squares of an I(1) series is of O,(T?) while that of an I(0) series is of O,(T). A test

'The term —T~*(y5)? can be omitted from the numerator of MZ, for the case of local GLS de-trended data;
see Miiller and Elliott (2003).



which rejects for small values of the MSB statistic therefore tests the unit root null hypothesis
against the stationary alternative. Stock (1999) shows that MSBj can be viewed as a modified

version of Bhargava’s (1986) R, statistic. The final test is based on PP’s (non-seasonal) ¢-based
~1/2 $2_ 4 N

unit root statistic Z;, := 7?\—Oto - M(A%T‘Q Z?zl(yf_l)z)_lm, where t is the t-ratio on mg

in the un-augmented form of (2.4) when S = 1. Noting that Z;, = MSBy x Z,, Perron and

Ng (1996) propose MZ;, as a modified version of the PP Z;, test. As with the corresponding

coefficient-based modified statistics, MZ;, and Z;, are asymptotically equivalent under Hy_.

3.2 Zero and Nyquist Frequency M Unit Root Tests

We now consider how we may generalise the principles underlying the trinity of non-seasonal M
unit root tests outlined above to develop tests for unit roots at the zero and Nyquist frequencies
in the seasonal case. Consider first the modified coefficient-type tests. Here, in a similar vein to
the relationship that holds between M Z( and Z; in the non-seasonal case, it is straightforward
to show that MZ, = 7, + %(ﬁk)Q +0p(1), k =0,5/2, where for the zero (k = 0) and Nyquist

(k = S/2) frequencies,
T‘l[GéJQQ—-@ép)1<—X%

or—25T 13 27
> Snts1 Yk Snts—1

with 7 the OLS estimates of 7y, k = 0,.5/2, from estimating (2.4) with p* = 0, Zp and Zg/,

the zero and Nyquist frequency coefficient-based PP statistics, respectively, defined in section

MZy =

k=0,5/2, (3.2)

S.5 of the supplementary appendix. Finally, 5\3 and 5\?9 /o are consistent estimators of )\(2) and
)\?g /2 respectively. The unit root null hypothesis at the zero and Nyquist frequencies is rejected
for large negative values of the MZy and MZg/, statistics, respectively.

To make the MZy, k =0, 5/2, tests operational we therefore need consistent estimators of
the long run variance parameters )\i, k = 0,S5/2. Following Breitung and Franses (1998) and
Gregoir (2006), these can be obtained using sums-of-covariances (or kernel-based) estimators
based on the estimated un-augmented form of (2.4), and are defined as follows:

T—1
Mwai= Y r(i/mPjcos(wi),  k=0,5/2 (3.3)
j=—T+1

where wyg = 0 and wg/s = 7, and 9; is the sample autocovariance of order j computed from
the OLS residuals from estimating (2.4) setting p* = 0. Analogous quantities at the harmonic
seasonal frequencies can be defined as j‘z,WA’ k= 1,..,5% by setting wy, = 27k/S for k =
1,...,8* in the formula in (3.3). These estimators are consistent under H; ¢ provided the kernel
function & (-) satisfies e.g. the general conditions reported in Jansson (2002, Assumption A3)
and the bandwidth parameter m € (0,00) satisfies the rate condition 1/m + m?/T — 0 as

T — oo (which corresponds to Assumption A4 of Jansson, 2002).
An alternative approach, which in the non-seasonal case has been shown to deliver unit
root tests with considerably better finite sample size properties, is to use the ASD estimators

originally proposed in Berk (1974) and extended to the context of the ADF regression by



Perron and Ng (1998); see, in particular, Ng and Perron (2001) and Haldrup and Jansson
(2006). Following the approach in Berk (1974), the ASD analogues of the sums-of-covariances

estimators in (3.3) are given by:
5‘%,AR = Sg(l - a(eiwk))—2’ k= 07 S/2 (34)

Analogous quantities at the harmonic seasonal frequencies can be defined as

a 32

MeAR = — = — s, k=1,...,8% (3.5)
{1 — Re (¢ (dmk)))} + {Im <¢ (e(lwk))>}

In (3.4) and (3.5), s? and (;AS(L) = f; ¢: L' denote the OLS residual variance estimator and
the fitted augmentation polynomial, respectively, from the augmented HEGY regression, (2.4),
with qgj denoting the OLS estimator of ¢7, j = 1,...,p*, from (2.4). Consistency of the ASD
estimators under H; ¢ requires that: (i) the lag polynomial ¢(z) is invertible, and (ii) that the
lag length used in estimating (2.4) satisfies (1/p*) + (p*)3/T — 0 as T — oo; see Berk (1974).
Noting that the HEGY transformed level variables yg’ Sns and yg /2, S+’ defined just below

(2.4), filter out unit roots at all but the zero and Nyquist frequency, respectively, the sums of
squares of these variables can be used to form the analogues at the zero and Nyquist frequencies,

respectively, of the non-seasonal MSB statistic defined in (3.1); that is,

T 1/2
1 2
MSBy, = [T?X? > (y,ﬁ,sw_l) ] , k=0,9/2. (3.6)
k Sn4s=1

The unit root null at the zero and Nyquist frequencies is rejected for small values of MSBy and
MSEBg/y, respectively. Combining (3.2) and (3.6), M versions of the seasonal ¢-based PP-type
Zy,, k = 0,5/2 tests (as defined in section S.5 of the supplementary appendix) can then be

straightforwardly defined to reject for small values of the statistics

MZ,, = MZy x MSBy, k=0,5/2. (3.7)

3.3 Harmonic and Joint Frequency M Unit Root Tests

In order to generalise the M tests to the harmonic seasonal frequencies, we will consider an ap-
proach based around the use of the demodulator operator introduced by Granger and Hatanaka
(1964) and used in the context of complex unit root analysis by, inter alia, Gregoir (1999,2006).2

To illustrate the principle of demodulation, consider the complex-valued process, zgn+s,
near-integrated at frequency wg, (1 — (1 + %)e ' L)zgy1s = Ugn+ts, wWhere the innovation

USn+s satisfies Assumption 1. By recursive substitution it follows that zg,ts can be written as,

Sn+s
ZSnts = efiwk(SnJrs) (1 + %)(Sn+s)zo + Z (1 + %&)SnJrsfjeiwkjuj ) (38)
j=1

2 An alternative approach is to define M tests at the harmonic frequencies analogously to the zero and Nyquist
frequency MZj, MSBy and MZ,, k= 0,S5/2, tests outlined above, using the relevant filtered variables y£75n+.§
and y2§5n+s, k=1,...,5" defined just below (2.4). Monte Carlo simulation results reported in the accompanying
working paper, del Barrio Castro, Rodrigues and Taylor (2015), suggest, however, that this approach yields tests

with inferior finite sample size properties to the standard augmented HEGY tests.



From the representation in (3.8) we observe that zg,ts is driven by the complex innovation
@k uj and can be expressed as a complex-valued near-integrated process at the zero frequency

multiplied by the demodulator operator e~iws(Sn+s),

The latter shifts the peak in the spectrum
which occurs at the zero frequency with the former to a peak in the spectrum at frequency wy.
In order to use the demodulation-based approach to develop harmonic frequency M-type

tests we first need to define the demodulated complex conjugate variables,

yi ga:ws — owk(Snts) (1 (1—e“rL) AY (L )ySn-‘rs (3.9)
yi %IZH_S — e—lwk(Sn-l-S) (1 —WkL) AO ( )ySn—l-s (310)

in each case for kK =1, ..., 5%, where

S* S—1
ANL) = (1=L)(1+L) Y (1-2cosfw;]L+ L?) = sinfwy] 'O sin[(j + Dwg] L7) (3.11)
J#kj=1 j=0

omitting the factor (1 + L) above when S is odd. As demonstrated in the supplementary

13
Sn+s

integrated process at frequency wj, with associated AR(2) polynomial (1 — 2 cos(wy)(1 + %)L
+(1+ %)2L?). Consequently, the filters (1 —e“*L)AY(L) and (1 — e “*L)AY(L) when applied
to ygn . deliver the complex-valued near-integrated processes with associated (complex) AR(1)
polynomials (1 — (1 + %)e “sL) and (1 — (1 + %)e“*L), respectively; see (S.18) and (S.19)

iwg (Sn+s) —iwg (Sn+s) in

appendix (see equation (S.17)), applying the filter A(L) to y yields a real-valued near-

in the Appendix. Finally, the demodulation by multiplication by e and e
(3.9) and (3.10), respectively, yields the complex-valued near-integrated processes at the zero
frequency, yi ‘Snys and yk Sn+s, associated with the filters (1 — (1 + %)e L) and (1 — (1 +

Fe e“r L), respectively; see (S.27) and (S.28) in the supplementary appendix.

The following weak convergence results for yi%c; 4 and yiDSl;L +s of (3.9) and (3.10), respec-
tively, follow straightforwardly from (S.27) and (S.28) in the supplementary appendix,
12, €00 o=t () . o ()
T / iSLrNjJrs = \/5 |:Jlg Cr ( ) Jlg \Ck (T):| = \/5 “ka,ck (T’) (312)
—1/2, £Db oetp (e7%) . oet) (e7F)
T 1/2yl§,SLrNj+s = V2 [Jlg,ck (r) = Jlg Ck (T)} = T"Hlﬂ,ck (r) (3.13)

in each case for k = 1,...,5* and where “=" denotes weak convergence, as T' — 00, in the
Skorohod topology. In (3.12) and (3.13), v¥(:) is as defined in Assumption 1, while Jéka(r)
and J,gtk (r), k = 1,...,5% are the independent Ornstein-Uhlenbeck based processes which
will subsequently be defined in Theorem 4.1. Notice that Ji ., and Ji., in (3.12) and (3.13),
respectively, form a complex conjugate pair of complex OU processes.

As the limiting representations given for yk Sn+s and yk Sn+s in (3.12) and (3.13) make clear,

developing feasible harmonic frequency M-type test statistics based on these demodulated

¢,Da £,Db
k,Sn+s k,Sn+s?

together with estimates of the seasonal long run variance nuisance parameters o.1(el*) and

variables will require taking appropriate real-valued transformations of y and y

o-1(e k) which feature in (3.12) and (3.13), respectively, which are consistent under Hj .

It is straightforward to show that the latter can be obtained, under the conditions stated for



consistent estimation in section 3.2, using the ASD estimators, S\i ap = s2{1 - [p(elr)]} 2
and )\k “AR = =s2{1—[¢ (e w172 k =1,..., 8%, where s? and qg() are as defined below (3.5).

For the former, we take the followmg transformations
£,Da £,Db
yk ,Sn+s yk ,Sn+s
Ne,arVT AkA VT

1 yf ,Da yf ,Db
Im,¢ k,Sn+s k,Sn+s
Y = =Im 3.15

k,Sn+s 2 (Ak AR /* )\k AR\F> ( )

for k = 1,..., 5% Notice that the transformations in (3.14) and (3.15) are designed such that
they weakly converge to J,g o, (1) and Jlgtk (r), respectively. Other transformations with this

Re.§ ._
Y Sn+s T 572’6

(3.14)

same asymptotic property could be used instead, but we found little difference even in very
small samples compared to using (3.14) and (3.15).

The sequence of transformations in (3.9)-(3.10) and (3.14)-(3.15) map the original (de-
trended) series ygn 4 Which admits a complex pair of (near-) unit roots at frequency wy into
two (scaled) series, 3/175;5 4 and yg?f+ ¢» each of which has a single (near-) unit root at the
gn 4 admits a pair of unit roots at frequency

d Im7£
n-+s an yk,5n+s
unit root. Likewise, under Hi,, y,?gg 4+ and yfrgf s cach admit either a stable (c; < 0) or
explosive (¢ > 0) root at frequency zero. Consequently, by analogy to the non-seasonal M

tests in section 3.1, Hy j can therefore be tested against Hj ., using either y;jg’sH or Y, S’;f—i—s in

zero frequency. Consequently, under Hy j where y

wg, then so the two demodulated series yﬁg’ﬁ will each contain a zero frequency

the following harmonic frequency M-type statistics, in each case for k =1, ..., 5%,

271/2

K-MSBy, = ( > Y 1) (3.16)
Sn+s=1
K.£ K¢
Y Yy -1
K-MZ, = ('“T> ('“0) (3.17)
[K-MSBy)?
K-M2Zy, = K-MZ x K-MSB;, (3.18)

where setting L = Re in (3.16)-(3.18) denotes tests based on yk o + , while setting K = Zm
denotes the corresponding tests based on yk S . In parallel with the M tests from section 3.2,
Hy . is rejected in favour of Hy ., for large negatlve values of Re-M2Zy,, Im-M2Zy,, Re-MZy,
and Zm-M2Z;,, and for small values of Re-MSBy, and Im-MSBy, k =1, ..., 5*.

The harmonic frequency M-type unit root test statistics proposed in (3.16)-(3.18) will be
shown in Theorem 4.1 to share the same limiting distributions as the corresponding M-type
tests defined for the zero and Nyquist frequencies in section 3.2. As a result, asymptotic critical
values for the tests based on these statistics are as given for the corresponding non-seasonal
tests. Moreover, this also implies that their asymptotic local power functions under Hy ., will
be close to the power envelope for testing for a single unit root at either the zero or Nyquist
frequency. This is known to lie considerably beneath the power envelope for testing Hy ;, against
Hi ., ; see, for example, Rodrigues and Taylor (2007). Consequently, one could consider joint

tests which combine the M-type statistics based on (3.14) and (3.15) in order to increase



power. To that end we propose the test which rejects for large values of the following statistic,
analogous to the F} test statistic of HEGY from section 2.3:

PRy = % [(Re—MZtﬂk)Q + (Im—MZtﬂkY]  k=1,..,5" (3.19)

Similarly, M Z-type analogues of the joint frequency F | g/2) and Iy | s/2) HEGY tests from

-----

section 2.3 can be formed by rejecting Hy seas and Hy for large values of the statistics

S*
1 2
D o D
Fi.sp) = g1 2> it (Mztws/z) ] (3.20)
k=1
and .
1 2 2
D R D
Fro.1s20 7= g [2ZFMJ€ + (Mztﬂ()) + (Mztww) ] ; (3.21)
k=1

respectively. Analogous joint tests can also be formed by rejecting Ho 1, Ho seas and Hy, respec-

tively, for small values of the MSB-type statistics,

MSB) = %[(Re-Mszsk)M(zm-Msskﬂ o1 (322
g* 1/2
MSBE g = ﬁ {kzl (MmSBR)? +M33§/2} , (3.23)
5 1/2
MSBY ) = ;{; [MSBY]? + MSB} +M56§/2} : (3.24)

Remark 3.1: The statistics in (3.19)-(3.24) are based on the approach underlying the cor-
responding F-type HEGY statistics obtained from (2.4). An alternative is to follow the ap-
proach used to develop point optimal seasonal unit root tests in Rodrigues and Taylor (2007),
whereby the optimal joint tests are based on the sum of the individual optimal test statistics in-
volved. We define these test statistics as follows, S/DM = Re-MZy, +Im-M2Zy, , k=1,...,5%,
S* S* :
S?\4,1...LS/2J = S?vl,k + M2z, and SR/I,O...LS/% = p S?\/t,k + MZy, + M2y, ,, reject-
ing Hy, for large negative values of SRA o k=1,..,5% and Hpgeas and Hy for large negative
values of S/D\/t,l...LS/QJ and S.E)\/I,O..‘LS/ZJ’ respectively.

4 Asymptotic Results for the M-Type Seasonal Unit Root Tests

We now provide representations for the limiting distributions of the seasonal M-type unit root
statistics from section 3. These are shown to have pivotal limiting distributions whose form
coincides with those which obtain for serially uncorrelated shocks. Local asymptotic power

functions of these tests, together with the relevant power envelopes, are also reported.

4.1 Limiting Distributions

In Theorem 4.1 we provide limiting representations for the single unit root M-type statistics in
(3.2), (3.6) and (3.7) and (3.16)-(3.18). These representations are indexed by the parameter ¢
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whose value is determined by which of Cases 1-3 of pgy,s, as outlined in section 2.1, holds and
the frequency under test. For the zero frequency wq tests: Case 1: { = 1; Cases 2 and 3: { = 2.
For the seasonal frequency wg, k =1, ..., |.S/2], tests: Cases 1 and 2: { = 1; Case 3: { = 2.

Theorem 4.1. Let ys,+s be generated by (2.1) under Hy ¢ and let Assumption 1 hold. Then,
as T — oo:

(i) for the zero (k = 0) and Nyquist (k = S/2) frequencies, the single M-type seasonal unit
root test statistics in (3.2), (3.6) and (3.7) satisfy,

MZ, = {2/01 [Tp e (r )}2dr}_1{[J,§ck( )]2—1}, k=0,5/2 (4.1)
MSBy, = { /0 1 [J,i(:k(r)rdr}lﬂ — MEBS, k =0,5/2 (1.2)

MZ, = ;{/O (7 )rdr}_l/Q{[J,ng( )}2—1} TS k=082 (43)

(ii) the harmonic frequency single unit root test statistics in (3.16)-(3.18), recalling that K = Re

relates to statistics based on y;zgqf vy

Zm,§ : ; _
0N Yy smts satisfy, in each case for k=1,..., 5%,

and KC = Im relates to the corresponding statistics based

K-MZ, = {2/0 [, )rdr}l{[’}{i% o] - 1} —K-MZ$ (44)

5 11/2

K-MSB), = [ / [chk( )} dr} = C-MSB, (4.5)
0

K-MZ;,, = K-MZSx K-M&BS =: T (4.6)

where “=7 denotes weak convergence in the Skorohod topology.

In the above ’H%Ck (r) = J,ng( ) if K = Re and ’Hi’% (r) = J,:CCk( ) if K = Zm, with
ngco(r), Jg/ch/z(T), J,g’ck( ) and J,g:k(r), k=1,...,58% ¢ = 1,2, collectively forming a set
of S mutually independent scalar Ornstein-Uhlenbeck [OU] processes. These limiting processes
are defined as follows. First let Wo(r), Wga(r), Wi(r) and Wi(r), k = 1,...,5*, be mutu-
ally independent standard Brownian motions. Then Jg’co (r), Jg/2705/2 (r), J,ich (r) and Jlg,*% (r),
k=1,...,5*% are mutually independent functionals of these Brownian motions whose precise
form depends on the de-trending index & and on whether ygnJrS is formed using OLS de-trending

or local GLS de-trending. In the case of local GLS de-trending: for { = 1, these are the stan-

dard OU processes J,ic (r) == Jheo(r) =[5 expler(r — 8))dWy(s), k = 0,...,[S/2], and
J,%*Ck( r) = Jp, (1) = = Jo exp(cx(r — s))de( s), k=1,..,5%; for ( = 2, they take the form
(1—ep)J} . (D)+e2 Sch (s)ds N N
T e (1) = T () —r{ ety k= 0, [S/2), and T, (r) = i, (r) =
1-¢ Jl* 1 sJ* (s)ds
r{( 2 1( ();;C 273 by, (9 }, k=1,..,58% For OLS de-trending they are de-meaned stan-
k

dard OU processes for ( = 1, so that, for example, Jl%,ck (r) == T, ( fo Ik, (8)ds, while
for ¢ = 2 they are de-trended OU processes, so that, for example, J,wk 1s the de-meaned and
de-trended standard OU process, J,?,Ck (r) = J,};,Ck (r)—12(r—1) fol (s—13) J,}:?Ck (s)ds.
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Remark 4.1: The limiting distributions given for MZy, k = 0,5/2, in (4.1), are identical (for
a given value of ) to and independent of those given for Re-MZ and Im-M2Zy, k=1, ..., 5%,
n (4.4). Similarly, the limiting distributions for the MZ;, , k = 0,5/2, statistics of (4.3) are
identical (for a given value of {) to and independent of those for Re-MZ;, and Im-M2Z,,
in (4.6). Moreover, it is also seen from (4.2) and (4.5) that the limiting distributions of the
MSBy, k=0,5/2, Re-MSBj, and Im-MSBy, k = 1,..., 5%, statistics are identical (again for

a given value of ¢) and are mutually independent.

Remark 4.2: The limiting distributions of the seasonal M-type statistics given in Theorem 4.1
coincide with those of the corresponding non-seasonal M statistics discussed in section 3.1, and,
hence, are free of any nuisance parameters arising from weak dependence in ug,+s. Selected
critical values for the tests based on these statistics can therefore be obtained from Table I
of Elliott et al. (1996, p.825) and from Table 1 of Ng and Perron (2001,p.1524). Moreover,
the asymptotic local power functions of these statistics also coincide with those given for the
corresponding statistics in the non-seasonal case and graphed in Figures 1-3 of Elliott et al.
(1996, pp.822-24). Finally, the representations for M Z;, and MZ;, /2 coincide with those given
in Rodrigues and Taylor (2007) for the corresponding HEGY statistics tp and tg /2, respectively.

We now detail the limiting distributions of the joint M tests from section 3.

Corollary 4.1. Let the conditions of Theorem 4.1 hold. Then, as T — oo: (i) F,/I\)/l,k =
%[(Re-ﬁf)? + (Im-ﬁf)ﬂ = 2}51« k=1,..,5, F/I\)A,l...Lsm = ﬁ[z Zf:l f?\f,k + (7:94/2)2]"
FR 01572 = 5125001 Fut et (T8 H(T5)0)%); (i) MSBY, = J[(Re-MMSB )2 +(Zm-M&B;)?)!/2
= MEBYC, k= 1,...,5%; MSB) g5 = [S7L,(MEBYC)? + (MSBY)? + (MSBY ,)2]"/2,

j = 0,1; and (iii) S3,; = Re-T +Im-TS, k = 1,...,5%, 53471“%% = Y0 (Re-TE +
Im—7}f) + 7;1{/2, and kS’/D\/l’OmLS/2J = Zf;l(Re—ﬁf +Im—77f) + 7[)C + Tg)o-

Remark 4.3: The limiting distributions which appear in Corollary 4.1 have not appeared in
the literature before. Consequently, in Table 1 for the SRA and MSBP tests, and in Table 2
for the F/?/t tests, we provide selected asymptotic null critical values, for each of Cases 1-3
for the deterministic component, computed by direct simulation of the relevant limiting null
distributions in Corollary 4.1, using 100,000 Monte Carlo replications and a discretisation of
N = 1000 steps, for versions of the statistics based on either OLS de-trended data or local GLS

de-trended data, the latter using the relevant values of ¢ detailed in section 2.3.

4.2 Asymptotic Local Power Functions

Figures 1 and 2 graph the asymptotic local power functions of the seasonal M-type unit root
tests proposed in section 3, together with the seasonal point optimal-based tests of Rodrigues
and Taylor (2007) and, where relevant, the HEGY tests of section 2.3.3 Results for the zero,

3The seasonal unit root tests of Jansson and Nielsen (2011) have asymptotic local power functions which are

almost indistinguishable from the point optimal tests and, hence, are not reported.
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Nyquist and harmonic frequency unit root tests (which are independent of the seasonal aspect,
S) are given in Figure 1, while results for joint frequency tests for the quarterly case, S = 4,
are given in Figure 2. All results relate to tests based on local GLS de-trended data, with
results given for ( = 1 and ¢ = 2, where the index ( is as defined immediately prior to Theorem
4.1. The local GLS de-trending parameters ¢; detailed in section 2.3 were used for all tests.
FEach graph also reports the relevant Gaussian asymptotic local power envelope, taken from
either Elliott et al. (1996) or Rodrigues and Taylor (2007), as a benchmark. The local power
functions were calculated using direct simulation methods with 80,000 Monte Carlo replications,
discretising over N = 1000 steps. The horizontal axes of the graphs are indexed by ¢ which is
used generically to denote either the relevant frequency-specific non-centrality parameter, cg,
k=0,...,15/2] (so that for tests at the zero frequency, for example, ¢ = ¢) or, in the case of
joint frequency tests, a common non-centrality parameter (for example, ¢ = ¢; = ¢ in the case
of the tests of the null hypothesis of unit roots at all of the seasonal frequencies).

Consider first Figures 1(a) and 1(b) which pertain to the zero and Nyquist frequency tests.
Results are reported for the MZy,, MZ;, and MSBy, k = 0, 5/2, tests from section 3.2 together
with the feasible point optimal-type tests from section 4 of Rodrigues and Taylor (2007, pp.556-
558), denoted Py.r, k = 0,5/2, in what follows.* As discussed in section 4, for a given value
of ¢ the large sample behaviour of a given zero frequency statistic and its Nyquist frequency
analogue coincide, and coincide with the behaviour of that statistic in the non-seasonal (S = 1)
case. This is also true of the P, r, k = 0,5/2, statistics, as demonstrated in Rodrigues and
Taylor (2007). For the local GLS de-meaning (( = 1) case in Figure 1(a) it is seen that the
asymptotic local power functions of the MZy,, MZ;, , MSBy, and Py, k =0, 5/2 tests all lie
very close to the Gaussian power envelope and are almost indistinguishable from each other,
echoing results in Figures 1-3 of Elliott et al. (1996). For the local GLS de-trended (¢ = 2)
case in Figure 1(b), we see a decline in the power curves and the power envelope relative to
the corresponding quantities in Figure 1(a), again consonant with Figures 1-3 of Elliott et al.
(1996). In the local GLS de-trended case the tests again all lie very close to one another and
again are effectively indistinguishable from the Gaussian power envelope.

Figures 1(c) and 1(d) present the corresponding results for the harmonic frequency M-type
tests of section 3.3, the feasible point optimal Pj 7 test of Rodrigues and Taylor (2007) and
the HEGY Fj test. Gaussian local power envelopes are from Gregior (2006) and Rodrigues
and Taylor (2007). For a given value of ¢, the demodulated single unit root M-type tests in
(3.2)-(3.7) and (3.16)-(3.18) were virtually indistinguishable and so we only plot Re-MZy, .
The results for ¢ = 1 in Figure 1(c) show that the local power function of the demodulated
Re-MZ;, test lies well below both the Gaussian local power envelope and the power functions
of the other harmonic frequency unit root tests, as would be expected given that each of the
latter jointly test on both complex conjugate harmonic frequency unit roots. Of the other tests,
the Py 7 test displays the best power. The MSB) and the SI/J\A,k test of Remark 3.1 are both
slightly less powerful than the aforementioned test, followed by the standard HEGY F}, test

“The relevant HEGY tests tx, k = 0,5/2, are not included in Figures 1(a) and 1(b) because they are asymp-
totically equivalent to MZ;, ; cf. Remark 4.2.
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and the demodulated F,R/l,l test whose power functions lie close to one another. The results for
¢ = 2 in Figure 1(d) show the same power ordering among the tests as was seen in Figure 1(c)
but the differences between these power functions are far less pronounced, with the exception
of the demodulated Re-MZ;, test whose power function still lies well below those of the other
tests. As with the corresponding results in Figures 1(a) and 1(b), the power functions and the
power envelope again decline relative to those in Figure 1(c).

Finally in Figure 2 we graph the Gaussian power envelopes and asymptotic local power
functions of the joint frequency tests discussed in this paper which obtain in the quarterly case,
S = 4. Specifically, Figures 2(a) and 2(b) report results, for the local GLS de-meaned and de-
trended cases respectively, for the Fio, FRA,IZ? MSBP, and S/th,m tests and the corresponding
feasible point optimal test of Rodrigues and Taylor (2007), denoted PT}2 7, while Figures 2(c)
and 2(d) report results, again for the local GLS de-meaned and de-trended cases respectively,
for the Fyio, F/'i/l70123 MSEBR5, 5347012 and PTyi2 1 tests, the latter again denoting the relevant
feasible point optimal test from Rodrigues and Taylor (2007). Consider first Figures 2(a) and
2(b) which pertain to tests of the null hypothesis of unit roots at all of the seasonal frequencies,
Hp seas = ﬂileo,k- The S/D\/"u test and the feasible point optimal Pjp 7 test outperform the
other tests regardless of whether de-meaning or de-trending is considered. For the de-meaned
case, the MSBY, test outperforms both the Fio and F/I\)/l,12 tests, but for the de-trended case
these three tests all perform quite similarly. Qualitatively similar patterns are observed in

Figures 2(c) and 2(d) for the corresponding tests of the overall null hypothesis, Hy = ﬂz:oHO,k-

5 Finite Sample Results

We next investigate the finite sample size and (local) power properties of the new seasonal M-
type unit root tests of section 3, comparing them with the augmented HEGY tests of section
2.3 and the feasible point optimal tests of Rodrigues and Taylor (2007). Our simulations are
based on the following quarterly (S = 4) DGP:

Co 2 c1 1?2
(=[] 2) (i [ 5] 2) (1 [ ] 22 ) s = v 51)
for s = =3,...,0, n =1, ..., N initialised at z_3 = --- = 29 = 0, and where w4, 15 a stationary

error whose properties will be detailed below. Results relating to finite sample size, where
co = ¢1 = co = 0, are reported in section 5.1, while finite sample power results, where ¢; < 0,
for some i € {0, 1,2}, are reported in section 5.2. Results are reported for N = 50 and N = 100.

For the long run variance estimates needed to implement both the new semi-parametric tests
proposed in this paper and the corresponding feasible point optimal tests of Rodrigues and Tay-
lor (2007), we explored both sums-of-covariances estimators based on Bartlett and Quadratic
Spectral kernels and ASD estimators. Tests based on the latter displayed considerably better
finite sample behaviour throughout and so we only report these results. The AR lag order used
in constructing the ASD estimates was determined using the seasonal MAIC criterion of del
Barrio Castro, Osborn and Taylor (2016) using Schwert’s rule, kmax k' := LK[%P/‘LJ, with K a

constant discussed below, to determine the maximum lag length allowed. As in Perron and Qu
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(2007) the MAIC criterion is computed based on OLS de-trended data. Results are reported for
both Case 1 (zero and seasonal frequency intercepts) and Case 3 (zero and seasonal frequency

intercepts and trends). All reported results are based on local GLS de-trending.

5.1 Empirical Size

In order to explore the impact of near cancellation regions on the finite sample size, Tables
3-5 report results for the case where uyy4+s in (5.1) follows the MA(q) process ugqnts = E4nts —
04€4n+s5—q, With e4nqs ~ NIID (0,1), for s = —3,...,0, n = 1, ..., N, initialised at £; = 0, j < 0.
The MA order and range of values of the MA parameter which generate a near cancellation
region vary according to the frequency of interest. For the zero frequency we consider ¢ = 1
and 6; € {0,0.2,0.4,0.6,0.8,0.9}. For the Nyquist frequency we consider ¢ = 1 and 6; €
{0,-0.2,-0.4,—0.6,—0.8,—0.9}. For the harmonic frequency, we consider ¢ = 2 and 6y €
{0,—0.04, —0.16, —0.36, —0.64, —0.81}. Notice that the moduli of the resulting MA roots is
the same in each design. Given the values of 6, considered, we set K = 12 in the formula for
kmax x to allow for a reasonably long lag length in the AR approximation.

Consider first the results in Table 3 for zero frequency tests. Although the standard HEGY
to test displays reasonably good size control both when 61 = 0 and when 6, is small, its empirical
size rises significantly above the nominal level as #; increases. This occurs in both Cases 1 and
3, with the distortions slightly lower in general under Case 3. Although ameliorated as NV
increases, the empirical size of ty remains uncomfortably large, even for N = 100, for large
values of 0. To illustrate, under Case 1 and 6; = 0.9 the empirical size of ¢ is almost 23% for
N = 50 reducing only to 18% for N = 100. Consistent with findings for the non-seasonal case in
Ng and Perron (2001), the trinity of zero frequency M-type tests all display significantly better
size control than the HEGY ¢ test, and show more pronounced improvements in relative size
control than the HEGY tests as the sample size increases. In the example above, the three M
tests all display empirical size of around 8% for N = 50, with no over-sizing seen for N = 100;
indeed, again consistent with the simulation results in Ng and Perron (2001), the tests are
all slightly under-sized in the latter case. As with the ty test, distortions tend to be lower
under Case 3 (with the exception of the case where §; = 0.9 and N = 50); here the three
M tests for 1 = 0.9 are again slightly under-sized when N = 100 (compared to 17% size for
to). The feasible point optimal Py 1 test of Rodrigues and Taylor (2007) behaves very similarly
to the three M tests. Similar observations can be made about the joint frequency tests in
Table 1. The lowest size distortions are again displayed by the M tests from section 3 and the
corresponding feasible point optimal test, Ppi2 7, from Rodrigues and Taylor (2007), although
the latter is consistently undersized, especially so under Case 3. In particular, the F/I\)/l,012 test
displays consistently better size control than the HEGY Fppo test.

Turning to the results for the Nyquist frequency in Tables 4a (Case 1) and 4b (Case 3),
very similar patterns of size distortions are seen here as were observed in Table 3 as might be
expected, given that an equivalent near cancellation effect is obtained here for a given value
of 01 as for the zero frequency results. In addition to the joint tests considered in Table 3,

Tables 4a and 4b also report the joint tests for testing the null hypothesis of unit roots at
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all of the seasonal frequencies, Hp seas- Again the same relative behaviour is seen between the
HEGY-type and M-type tests as is observed for the other tests.

Finally, we turn to the results for the seasonal harmonic frequency in Tables 5a and 5b.
Consider first the results for Case 1 in Table 5a. As with the results for the HEGY tests in
Tables 3 and 4a-4b, the harmonic frequency HEGY F7 test displays good size control for small
values of 65 but is again rather over-sized for the larger values of 2 considered. For example, for
02 = 0.81 and N = 50 the F} test has size of about 12% falling to about 8% for N = 100. The
best size control is offered by the FR/(,I test which displays excellent size control for all values
of 05 considered for both NV = 50 and N = 100. In the example above FR/M has empirical size
of about 5% for N = 50 and 3% for N = 100. The single root demodulated tests Re-MZ,
Im-M2Zy, Re-MZ,,, Im-M2Z,,, Re-MSB; and Zm-MSB;, perform similarly to one another
but do not control size as well as FRA,D displaying significant under-sizing when 6 = 0.81, and
some over-sizing for f = 0.16 when N = 50. The MSB) and P r test of Rodrigues and Taylor
(2007) behave similarly to one another, displaying slightly poorer size control than the HEGY
Fy test. As regards the joint frequency tests, here the feasible point optimal tests of Rodrigues
and Taylor (2007) appear to offer the best size control overall. The joint frequency M-type
tests perform similarly to the corresponding joint frequency HEGY tests, Fi2 and Fpia.

The results in Table 5b for Case 3 show a similar ordering of the tests as for Case 1 but with
an overall deterioration seen in the finite sample size control of most of the tests. Again the best
size control is shown by the Fﬁ/l,l test, which displays fairly similar size control overall to the
single root demodulated tests. These tests again display considerably better size control in the
near cancellation region than the HEGY Fj test. To illustrate when 65 = 0.81, the HEGY F}
test has empirical size of about 25% for N = 50 and 16% for N = 100, while the empirical sizes
of F/'i/l?l in these cases are about 4% and 3%, respectively, and those of the P; 7 test are about
20% and 7%, respectively. In the case of the joint frequency tests, the joint frequency M-type
tests display arguably the best overall size control, now notably better than the corresponding
joint frequency HEGY tests. The feasible point optimal tests of Rodrigues and Taylor (2007)

also avoid any over-sizing but display a stronger tendency to under-sizing than the M tests.

5.2 Empirical Power

Figures 3-6 graph the finite sample size adjusted power functions of the tests® for the case where
the data are generated according to (5.1) with u4n4s ~ NIID(0,1), with K commensurately
set to zero in the formula for kpax k. And as in Rodrigues and Taylor (2007) the power results
pertain to the case where, when moving a particular non-centrality parameter ¢, k = 0,1, 2
away from unity, the remaining non-centrality parameters are all held at zero. The index, ¢, on
the horizontal axes of the graphs has the same meaning as described above for Figures 1 and 2.

From Figure 3 we observe that the zero frequency tests display very similar power, partic-
ularly under local GLS de-trending (Case 3) where, even for N = 50, the power functions of

the various tests are almost indistinguishable. In the case of local GLS de-meaning (Case 1)

®Results are not reported here for the corresponding Nyquist frequency unit root tests because they were

almost identical to the corresponding zero frequency tests reported in Figure 3.
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and for the smaller sample size, N = 50, and as we move further into the stationarity region
(i.e., as ¢ becomes more negative) we note that the point optimal test, PTj, loses some power
relative to the other tests, but overall finite sample power remains very similar across the tests.

Turning to the results for the harmonic frequency unit root tests reported in Figure 4 we see
that, in line with the corresponding asymptotic local power results reported in Figure 1, there
is rather more variation across the finite sample power properties of the various tests, relative
to the results for the zero frequency tests in Figure 3. Again consistent with the corresponding
asymptotic local power results in Figures 1(c) and 1(d), we see in Figure 4 that the demodulated
single unit root test Re—M2Z;, (again we only report one of these demodulated single unit
root tests because they display virtually identical power properties) displays considerably lower
power than the other harmonic frequency unit root tests. As for the remaining tests, under
Case 1 the best performing tests are P71, MSB{D and 81\3,17 all outperforming the F; and
F A[/},l tests, which perform very similarly, on power. These rankings hold for both N = 50 and
N = 100; indeed, the local power properties of a given test alter little between the two sample
sizes, suggesting again that the asymptotic local power functions provide good predictors for
the finite sample powers of the tests. Under Case 3, roughly the same power ordering as was
observed for Case 1 is seen, although again as predicted by the asymptotic local power functions,
the power differentials between the tests are decreased relative to those seen under Case 1.

We turn now to the joint frequency tests. Consider first the joint seasonal unit root tests
graphed in Figure 5. For both sample sizes and under both Cases 1 and 3 we see that the differ-
ences across the various power functions are relatively small. In terms of relative performance,
under Case 1, for both sample sizes the highest power is delivered by PT}2, closely followed by
51\%12 and MSB?Q, with the lowest power displayed by Fis and F' ]\D4’12, the latter two displaying
almost identical power. Under Case 3, we again see that the best performing tests on power are
PTioand S ]\D4,127 while the power performances of Fi5 and F ]\121712 are now as good and sometimes
superior to that of MSB%. Next in Figure 6 we display finite sample power graphs for the tests
of the null hypothesis of a unit root at all of the zero and seasonal frequencies. The conclusions
from these graphs are qualitatively similar to those remarked on above for the joint seasonal
frequency unit root tests. The only exception is for local GLS de-trending, where it is observed
that Fyio, F 13,012 and MSBODH display almost identical finite sample power.

For completeness, Figures S.1-S.4 in the Supplementary Appendix report the corresponding
size unadjusted power results for tests based on the relevant asymptotic critical values. They
highlight a degree of over-sizing seen in some of the tests, particularly the augmented HEGY
tests, making meaningful power comparisons between the tests somewhat difficult when not
using size adjusted power. Interestingly, the point optimal tests of Rodrigues and Taylor (2007),
which were already seen in section 5.1 to show a tendency to undersize, are correspondingly seen
to lack power in cases where they are under-sized relative to the other tests when comparisons
are made on the basis of size unadjusted power. This would seem to further strengthen the
case for the use of the M-type tests in that they simultaneously control size well, in general,

and yet avoid the low power that can be seen with the point optimal tests in small samples.
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6 Conclusions

We have generalised the so-called M class of semi-parametric unit root tests to allow for unit
root testing at the zero and seasonal frequencies in seasonally observed data. For tests involving
the seasonal harmonic frequencies this was shown to necessitate the use of demodulated data. In
the non-seasonal case the M unit root tests, combined with an autoregressive spectral density-
based estimator of the long run variance, are known to considerably improve on the finite sample
size control of augmented Dickey-Fuller tests in the most problematic (near-cancellation) case
where the driving shocks contain a strong negative moving average component. Using Monte
Carlo simulation methods we have shown that this result carries over to the seasonal case
with the M-type seasonal unit root tests we develop here displaying significantly better finite
sample size control than the corresponding parametric HEGY seasonal unit root tests in near
cancellation regions. As in the non-seasonal case, these improvements in finite sample size were
shown not to come at the expense of any loss in power relative to the HEGY tests. Moreover,
certain of the M-type seasonal unit root tests were shown to achieve similar or better finite-
sample power properties than the feasible point optimal tests of Rodrigues and Taylor (2007).

Overall, based on both the finite sample size and local power properties of the tests consid-
ered, we recommend the use of either one of the trinity of M-type tests or the feasible point
optimal test of Rodrigues and Taylor (2007), when testing for a unit root at either the zero
or Nyquist frequencies. For testing for a complex pair of unit roots at one of the seasonal
harmonic frequencies, we recommend the test based on F' ]\271 of (3.19), because among the tests
considered it was the only one which delivered reliable size control. In each case we recommend
basing these test statistics on an autoregressive spectral density (seasonal) long run variance
estimator using del Barrio Castro, Osborn and Taylor’s (2016) seasonal implementation of the
MAIC lag selection criterion of Ng and Perron (2001).
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Table 1: Asymptotic critical values for the MSBP-type and SRA—type tests

Case 1 Case 2 Case 3
0.010  0.025 0.050 0.100 0.010  0.025 0.050 0.100 0.010 0.025 0.050 0.100

OLS de-trended

MSBE 0.140 0.153 0.166  0.182 0.140  0.153 0.166  0.182 0.111 0.118 0.125 0.134
MSB}, 0.259  0.280 0.301  0.327 0.259  0.280 0.301  0.327 0.200 0.212 0.223 0.237
MSB3,  0.363  0.390 0.416  0.449 0.333  0.355  0.376  0.402 0.274 0.289 0.302 0.319
Shia -5.733  -5.312  -4.953 -4.541 -5.733  -5.312  -4.953 -4.541 -6.825 -6.419  -6.079 -5.691
Sz -7.904 -7.377 -6.939 -6.426  -7.904 -7.377 -6.939 -6.426 -9.576  -9.073  -8.653 -8.175
S.012 -9.944 -9.347 -8.833 -8.250 -10.504 -9.920 -9.436 -8.847  -12.23 -11.636 -11.164 -10.615
Local GLS de-trended

MSBE 0.176  0.197  0.219  0.250 0.176  0.197  0.219  0.250 0.125 0.135 0.144 0.156
MSBY, 0.330  0.368  0.402  0.451 0.333  0.369 0.405 0.453 0.224 0.239 0.253 0.271
MSB3, 0474 0.519 0565  0.624 0.415 0.453 0.488  0.533 0.308 0.327 0.344 0.366
Shia -3.951 -3.506 -3.115 -2.648  -3.951 -3.506 -3.115 -2.648 -5.758  -5.350  -5.025 -4.642
S -5.197  -4.624 -4.168 -3.596  -5.197 -4.623 -4.167 -3.596 -8.012 -7.512 -7.106 -6.647
SM.o12 -6.307 -5.679 -5.137 -4.496  -7.245 -6.648 -6.121 -5.519 -10.136  -9.603  -9.134  -8.614

Notes: Case 1 indicates that the deterministic component used consists of a zero and seasonal frequency intercepts;
Case 2 indicates that zero and seasonal frequency intercepts and a zero frequency trend were used; and Case 3

indicates that zero and seasonal frequency intercepts and trends were used.

Table 2: Asymptotic critical values for the FRA—type tests

Case 1 Case 2 Case 3
0.900 0.950 0.975 0.990 0.900 0.950 0.975 0.990 0.900 0.950 0.975 0.990

OLS de-trended

FRA.l 5.540 6.555 7.496 8.648 5.540 6.555 7.496 8.648 8.420 9.615 10.667 12.028
FRA.lZ 5.087 5.867 6.592 7.498 2333 2.869 3.384 4.064 7.847 8.778 9.607  10.682
F/?/l.012 6.403 7.278 8.083 9.063 7.338 8.261 9.081 10.069 10.010 11.039 11.967 13.182
Local GLS de-trended

FJI\)/LI 2.555 3.259 3.961 4.880 2.555 3.259 3.961 4.880 5.731 6.695 7.565 8.765
F/I\)/l'm 2.352  2.880 3.414 4.052 2.333 2.869 3.384  4.064 5.343 6.089 6.782 7.648
F/I\)A.012 2.208 2.647 3.073 3.616 3.956 4.620 5.249 6.035 5.099 5.723 6.318 7.016

Note: See notes to Table 1



Table 3: Empirical size of zero frequency unit root tests. MAIC lag selection.

DGP (51) with ¢ = 0 and Usn+s = Edn+s — 9154n+s—1~

Case 1: Local GLS de-trended data

N 01 t, MZy MZ,, MSBy Por Fore o1 MSBYy  Poier  SRo12

50 0.0 0.068 0.079 0.083 0.077  0.067 0.065 0.064 0.117 0.042 0.115
0.2 0.073 0.094 0.098 0.087  0.079 0.068  0.064 0.119 0.046 0.111
0.4 0.086 0.105 0.111 0.100  0.091 0.075  0.069 0.123 0.046 0.108
0.6 0.102 0.108 0.115 0.100  0.096 0.076  0.073 0.131 0.051 0.116
0.8 0.133 0.062 0.069 0.053  0.064 0.086  0.068 0.099 0.043 0.105
0.9 0.227 0.081 0.086 0.074  0.082 0.151 0.102 0.061 0.027 0.110

100 0.0 0.063 0.066 0.069 0.064 0.061 0.060 0.052 0.073 0.034 0.072
0.2 0.064 0.073 0.073 0.073  0.065 0.056  0.054 0.079 0.032 0.069
0.4 0.070 0.079 0.079 0.077  0.074 0.057  0.057 0.077 0.036 0.072
0.6 0.079 0.078  0.080 0.077  0.072 0.060  0.060 0.076 0.033 0.075
0.8 0.103 0.046 0.050 0.040  0.050 0.070  0.050 0.071 0.032 0.069
0.9 0.182 0.028 0.031 0.025 0.032 0.109 0.056 0.048 0.024 0.066

Case 3: Local GLS de-trended data

N 6 to MZy MZy, MSBy Por Foiz  Friore MSBYa Poizr  Siioie

50 0.0 0.045 0.042 0.045 0.049  0.040 0.067  0.026 0.039 0.019 0.033
0.2 0.053 0.059 0.065 0.067  0.057 0.069  0.028 0.038 0.019 0.033
0.4 0.063 0.079 0.084 0.088  0.076 0.069  0.025 0.033 0.015 0.027
0.6 0.079 0.080 0.084 0.089  0.074 0.092 0.034 0.031 0.017 0.037
0.8 0.117 0.063 0.067 0.071  0.059 0.121 0.042 0.015 0.010 0.035
0.9 0.232 0.137 0.140 0.145 0.133 0.205  0.101 0.006 0.003 0.062

100 0.0 0.042 0.040 0.041 0.041  0.046 0.057  0.032 0.042 0.021 0.036
0.2 0.045 0.0561 0.052 0.051  0.056 0.056  0.031 0.043 0.021 0.036
0.4 0.060 0.065 0.067 0.063  0.072 0.061 0.034 0.043 0.020 0.038
0.6 0.065 0.056 0.059 0.057  0.065 0.067  0.042 0.051 0.026 0.048
0.8 0.082 0.020 0.022 0.019  0.027 0.077  0.034 0.023 0.013 0.033
0.9 0.165 0.023 0.025 0.022  0.029 0.127  0.041 0.007 0.005 0.033

Notes: Case 1 indicates that the deterministic component used consists of zero and seasonal frequency intercepts;

Case 3 indicates that zero and seasonal frequency intercepts and trends were used.
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Figure 1: Gaussian asymptotic local power envelopes and asymptotic local power functions of zero, Nyquist and
harmonic frequency local GLS de-trended unit root tests

(a) de-meaned zero (k = 0) and Nyquist (k = 5/2) frequency tests (b) de-trended zero (k = 0) and Nyquist (k = S/2) frequency tes
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Figure 2: Gaussian asymptotic local power envelopes and asymptotic local power functions of joint frequency
local GLS de-trended unit root tests for the quarterly case (S = 4)

(a) de-meaned joint seasonal frequency tests (b) de-trended joint seasonal frequency tests

PEnv o

12
D
MSB 12

D
FM12

D
M12
PT 1

12 14 16

PEnv 4

012

D
MSB 012

D
M,012

D
M,012

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16



Figure 3: Finite sample size-adjusted power functions of zero frequency unit root tests (quarterly case, S = 4)

(a) local GLS de-meaned tests - N = 50 (b) local GLS de-meaned tests - N = 100

(c) local GLS de-trended tests - N = 50 (d) local GLS de-trended tests - N = 100
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Figure 4: Finite sample size-adjusted power functions of harmonic frequency unit root tests (quarterly case,
S =4)

(a) local GLS de-meaned tests - N = 50 (b) local GLS de-meaned tests - N = 100




Figure 5: Finite sample size-adjusted power functions of joint seasonal frequency tests (quarterly case, S = 4)

(a) local GLS de-meaned tests - N = 50
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(c) local GLS de-trended tests - N = 50
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(b) local GLS de-meaned tests - N = 100

(d) local GLS de-trended tests - N = 100
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Figure 6: Finite sample size-adjusted power functions of joint zero and seasonal frequency tests (quarterly case,

S =4)
(a) local GLS de-meaned tests - N = 50 (b) local GLS de-meaned tests - N = 100
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S.1 Introduction

This supplement contains supporting material for our paper “Semi-Parametric Seasonal Unit
Root Tests”. Equation references (S.n) for n > 1 refer to equations in this supplement and
other equation references are to the main paper.

The supplement is organised as follows. Proofs of the main theoretical results in the paper
can be found in section S.2. A more detailed outline of the augmented HEGY seasonal unit
root tests are given in section S.3. Section S.4 details the limiting distributions of the lag un-
augmented HEGY seasonal unit root tests which obtain from (2.4) with p* set to zero. These
are shown in Theorem S.1 to be non-pivotal depending on any (un-modelled) serial correlation
present in ug,4s of (2.1b). Seasonal implementations of the PP unit root tests are outlined in
section S.5 and their limiting distributions are given in Theorem S.2 in section S.6. The proofs
of Theorems S.1 and S.2 are provided in section S.7. Additional Monte Carlo results relating to
size unadjusted finite sample power results are reported in section S.8. All additional references

are included at the end of the supplement.

S.2 Proofs of Main Results

S.2.1 Preliminary Results

Before providing the proofs of the main results given in the paper, a number of preliminary
results are needed first. To that end, we first note that under (2.3), xg,4s in (2.1b) can be

written as,
S*
Cs/2
ASOAS/Q | |k:1 Azkxgn+s = USn+s (S.1)

where A’ :==1—apL =1— (1 + SC—?\,) L, ACS%Z =1+agpl=1+ (1 + Cg]/\?) L,and A :=1—
2 cos [wg] axL+ai L? = 1—2 cos [wy] (1 + g—f\,) L+ (1 + SC—}“V)Q L?, for k =1,...,5* Consequently,
(S.1) can be equivalently written as,

*

S
LSn+s = [SO,CO (S’I’L + 5)] [SS/Q,CS/Z (Sn + 5)] |:Hk:1 Sk:,ck (Sn + ‘9):| USn+s (82)

where, for wp = 0 and wg/p = ,

Sn+s
Sic (Sn+s) = cos[((Sn+s) — j)wi] QTSI LS =0, 5/2
j=1

and, for wy = (27k)/S,k=1,...,5%,

Sn+s—1
S, (S +5) = sinfwy] " sin[((Sn+s)+1—7)wg] afnJrs_]LS"“*j

7=0
= sinfwy] " (sin[((Sn + s) + 1) wy] Sge, (Sn+ s)

—cos[((Sn+s)+ 1) wi] S2 (Sn+ s))

k,ck

.2]



with
Sn—+s

Sk, (S +5) := Z cos [jwy] Oé;jnJrS*jLSn—‘,-s—j
j=1
Sn+s . '
Slf,ck (Sn+s) = Z sin [jwg] afn""s_jLS"'*‘s_J.
j=1

In view of the foregoing, the identities given in Gregoir (1999, p. 463) can be extended to the

terms in (2.3) as follows,

Cs/2
AP A5/2 _ 1 (cs/2 —co B
S = 1 () L=1v 0N (S.3)
AT+ (1 —2cos [wg] + L) AP _ o ~ 2cos [wy] (cx — CO)L
2k0(wk) 2k0(wk) SN 2ko(wr) SN
(26}9 - CU) 2 Cz L2

2k0(wi) SN 2n0(wi) (SN)?

- r-o(d)-o()o(3) ro() o

A + (14 2cos [wg] — L) ACSS/; . cs/2 2cos [wy] (csj2 — cx) I
2K.5/2(Wk) 2kg/9(wi) SN 2K.5/2(Wk) SN
(2cc — csp2) o i 12

25/2(wi) SN 2k5/5(wk) (SN)?

- 1eo(d)o(}) +o(3) o) e

and
2cosfwy] — L ,¢;  2coswj]—L .
A J A k
2k (wgj) it 2k (wji) k
_ 4 4 cos [wg] cos [w;] (¢; — ck)L N 2 [cos [wj] <k — cos [wy] S%] 12
2k (w;) SN 2 (wkj)
4 [cos [wi] 5% — cos [w;] $&] 2 2 (¢j—cp) 13
2k (wk;) 2k(wgj) SN
ci \2 cn \2
2 [cos [wi] (s%)" — cos [w;] ($%) } 12 1 (c? - ci) .3
26 (wry) 2k (wrj)  (SN)?
1 1 1 1 1 1
(2 e0(2) 0 (2)-0(2) 0 (d)-o(L) s
where ro(wg) 1= 1 — cos [wy], kg/o(wk) := 1 + cos [wg] and K(wy;) := cos [wy] — cos [wy], j,k =
1., 5%

Consequently, noting that A}*Sy ., (Sn+ s) = 1 and using (S.3)-(S.6), it follows from (S.2)

after some tedious algebra and using the standard trigonometric identities, sin [((Sn + s) 4+ 1) wy]

[5.3]



= cos [w] sin [(Sn + s) wi|+sin [wg] cos [(Sn + s) wi] and cos [((Sn + s) 4+ 1) wg] = cos [wg] cos [(Sn + s) wi]
— sin [wg] sin [(S1 + s) wg], that zg,4+s can be decomposed into the sum of frequency specific

partial sums plus an asymptotically negligible term (see also Gregoir, 1999); that is,

1 1
LSn+s = gSO,CO (Sn + s) usnts + 555/2,65/2 (Sn + 8) Usn s
p
+§ Z [cos [(Sn + s) wi] i, (S1+5) Usnys
k=1

+sin[(Sn + s)wi] SP, (Sn+ s) u5n+8] +op(1). (S.7)

Defining Xy, := [£g5—(5-1); Lsn—(5-2)s - Ton]s = 0,..., N, and Up 1= [tign—(5-1); Usn—(5-2):
wwsugp)’s n=1,.., N, and noting that 37, exp (5—59\,)8(”_]) Uj =i exp ()" Uj, it will
prove convenient, for the analysis that follows, to re-write (S.7) in the so-called vector-of-seasons

representation:

LI " -
X, = kz::( < >C’kZexp<N) Ui + 0, (1) (S.8)

where §; := 0 for £ = 0 and k£ = S/2 and J; := 1 otherwise, and where C; := Circ[cos [0],
cos [wi] , cos [2wi], ..., cos[(S —1)wi], i = 0,...,[S/2], such that Cy and Cgp are S x
circulant matrices of rank 1, while for w; = 27i/S with i = 1,...,5* C; are S x S circulant

matrices of rank 2. For further details on these circulant matrices see, for example, Osborn and
Rodrigues (2002) and Smith et al. (2009).

Remark S.1: In order to relate (S.8) to (S.7) we have made use of the fact that the circulant
matrices involved can be written as Co = vovo', where vo' := [1,1,1,...,1], Cg/5 = vg/avg/s,
where vgo' := [~1,1,~1,...,1], and for j = 1,...,S*, Cj = v,V and finally the matrix Cj =
Circ[sin [0], sin[(S —1)wj], sin[(S —2)wj], ..., sin[wj]], with Cj = v;v}’, which will be used

later in lemma S.1 where

v [ cos [wj (1 —S)] cosfw; (2—S5)] -+ cos[0] ] . h’ ]
! sinfw; (1= 9)] sinfw; (2—8)] -+ sin[0] h*'
and
o [ —sinfw; (1-8)] —sinfw;(2-S5)] -+ —sin|0] ] B [ —h;f']
! coslw; (1=95)] cos[wj(2—S5)] --- cos[0] h’ ’
j=1,...,5% O

Remark S.2: As shown in Burridge and Taylor (2001), the error process, U,, defined above
(S.8) satisfies the vector M A(co) representation

o0
U= W,E, (S.9)
=0

[S.4]



where Ep, = [€5p—(5-1), Esn—(5—2), -+ Esn] 18 @ vector of IID errors, and the S x S matrices
Wy, ¥;,j=1,2,..., are given by

1 0 0 0 0
o1 0 0 0
0 0
T (5] (3
3 o 1 1 0
| Ys-1 Ys—2 sz Ps-a - 1]
and ~ _
Pjs Pis—1 Yis—2 Yis—3 o Yis_(s-1)
VYjsi1 is Yis—1 Yis—2 o Yis_(5-2)
¥, - Yjsi2 Pisy1 (I Yis—1 o is_(s-3) .
Yis+s  Vist2  Yist Yis o Yis_(s-4)
| Yists—1 Yjsts—2 Vis+s-3 Vists—a - vis ]
OJ
Next in Lemma S.1 we provide a multivariate invariance principle for er = [ygn_(s_l),

ygn_(S_Q), o ygn]’, where ygn+s = xsn+s—8/25n+s7§, and where it is recalled that the parameter

¢ € {1,2,3} denotes the deterministic Case of interest.

Lemma S.1. Let the conditions of Theorem 4.1 hold. Then, as N — oo,

15/2]
N7 = S (140 (G ()36 (1), e [0,1]
S 2
O¢

S

o
Y(1)Cod, (r) +(=1)Cypade, , (r) + 2; <bz’CiJ§i (r) + a:CiJ5, (7“)>]
(S.10)

where {51'}}56%, are as defined below (S.8); Jﬁk (r) = [‘]fk,l—s (r), Jf}wz_s (r), ...,Jci’o (r)] is
an S x 1 vector OU process such that ngk (r) = chk (r) dr + dW¢ (r) and W& (r) is an S x 1
vector Brownian motion process; a; := Im(y[exp(iw;)]) and b; := Re(y[exp(iw;)]), i = 1, ..., 5%,
with Re(:) and Im(-) denoting the real and imaginary parts of their arguments, respectively;
and Cy, Cg/, C; and Ci,i=1,...,8% are the S x S circulant matrices defined in Remark

S.1. Finally, with OLS de-trending:

1
T ) = Jea(r) - /0 Jor (r) dr

) = JL ()12 (r _ ;) /01 <r _ ;) [; ZO: JL (r)] dr

1\ /! 1
Jg’kﬁ (r) = Jclk’s (r)—12 (r - 2> /0 <T‘ - 2> Jclk,s (r)dr



and with local GLS de-trending:

Jops (1) o= Jops (1)
2 o 1 : . !
T2 (r) = Jes(r [ SZS (AJ% () +3(1 )\)/0 he, s (h) dh)]
J?k’s (r) = Jegs(r)—r [)\J%S (1) +3(1—X) /1 hJe, s (h) dh}
0

with X := (1 —7¢) / (1 +¢+¢*/3), in all cases for the indices s =1-S,...,0 and k = 0, ..., [ S/2].

Proof of Lemma S.1: Following along the same lines as for the proof of Lemma 1 in del
Barrio Castro, Osborn and Taylor (2012) and Phillips (1988) it follows that, as N — oo,

|[rN|—i
(\T/E*N 3 exp (%) B = I, (), relo1] (S.11)
i=1
1 [rNV] . _1 [rN| )
I a\IM= ¥ () a )M
\/N;GXP(N) Uy = Wi ;exp<N> Ei +o0,(1)
= W(1)J. (r), rel0,1] (S.12)

where E; and U; are as previously defined, dJ., (r) = ¢xJc, (r)dr +dW (r), W(r) isan S x 1
vector standard Brownian motion and J., (r) is an S x 1 vector standard OU process. Next
observe from (S.8) and (S.9), that

L5/2] PN .
vy = 3 (S5 oS e () )
k=0
5/2] (o]
_ 1+ 0y, ey v
- ,;0< S )Cklp Z ( ) E;+o0,(1) (S.13)

where {J} ,Ei/(? J, are as defined below (S.8), and the approximation in (S.13) follows from (S.12)
and using similar arguments to those used in Boswijk and Franses (1996, p.238). From (S.11),
(S.13) and the continuous mapping theorem [CMT] the result in (S.10) follows immediately.
Noting that ®(1) is also a circulant matrix, then by the properties of products of circulant
matrices it can be shown that CoW (1) = 9 (1) Co, Cg/2¥ (1) = ¢ (1) Cg/o, C;¥ (1) = b;C; +
a;C; and C;¥ (1) = —a;Cj+b;C; for j = 1,...S*; see, inter alia, Davis (1979, Theorem 3.2.4),
Gray (2006, Theorem 3.1) and Smith et al. (2009) for further details. The stated result then

follows immediately. [

Remark S.3: Note that the circulant matrices Cp and Cg/, are associated with the auxiliary
variables yg Snts and yg /2, Snts? respectively. Moreover, the circulant matrices C*, k=1, ..., 8*
(see Remark 2 in Smith, Taylor and del Barrio Castro, 2009) defined as:

ok~ Circ S%n [wk]’ sin [ka]7 sin [(S — 1) wg] o sin [2wg] (S.14)
sin [wg]” sin [wg] sin [wy] sin [wy]
_ Ck+cos[“’“]ck, k=1,.. 8"
sin [wg]

[S.6]



where O}, and C}, k = 1,...,S*, are as defined in Remark S.1 and are associated with the
filter AY (L) = sin[wy]” (ES Olsm [(7+1)wg] Lj) in (3.11). Finally the circulant matri-
ces Df and D, , k = 1,..,8% defined as, D := Circ[1,0,0,---,0,e*] and D, :=

Circ [1,0,0, -,0,e” lwk’] are associated with the filters (1 — eika) and (1 — e‘i“’kL), respec-
tively. O

In order to obtain results for the asymptotic distributions of the test statistics discussed in

this paper, the limiting results collected together in the following Lemma will prove useful.

Lemma S.2. Let the conditions of Lemma S.1 hold. Then, as N — oo,

N=YV20ovE LNJ = 0.1 (1) CoJ&, (r) (S.15)
N™ /03/2 |rN| = o (- )Jgs/z (r) (S.16)

cos [wy]

1/2CkY§NJ = o. (Ck+ Ck>\11(1)J§k(r),k:1,...,S* (S.17)

sin [wy]

R o e LA S
\/]VD CYLNJ

—=D, CMYE = 0. CFU (1) T8, (r) = 0utp (e7%) ELESTE (r) k= 1,...,5"  (S.19)

= 0.Cp U (1) I3, (r) = oot () E1, 0335, () k=1,...,8"  (S.18)

\/N
where the vector OU processes, Jgi (r), i =0,...,15/2], and the circulant matrices, C;, i =
,1S/2] and Cy, i =1,...,5*%, are defined in Lemma S.1, C* is defined in (S.14), D:jk =

Circ[1,0,0,---,0,€e*], Dy, := Circ [1,0,0,--- ,0, e—iwk], C;, = Circ [1,e7 157 Dwr o=i(S=Dr ...
Cyf :=Circ[1,el57Dwr el(5=2wn o elon] k=1, 8% & = [1e @k etk e i(5-Dwn]

52_,k = [1,€_i(s_l)wk, e‘i(S—Q)wk, s e—lwk] ’ gii:k . [17 eiwk’ei2wk7 _”’ei(S—l)wk]/ and S;:k; — [1,
el(s—l)Wk’ 61(5—2)“},@7 . eiwk]/'

Proof of Lemma S.2: The results in (S.15) to (S.17) follow immediately from Lemma S.1
using the following identities: CoCo = SCp ,Cyg/2Cg/2 = SCg/2, CxCk = §C’k and C,C), = 6k,
recalling that the matrix products between Cy, Cg/9, C; and C'], j=1,...,5" are all zero
matrices, and that multiplication between circulant matrices is commutative, and finally that
Cck .= (Ck + Cf)s[wk]@k). Consider next the results in (S.18) and (S.19). We first note, using

sin[wg]

Property 1.3 and expression (2) in Gregoir (2006), that

e—iwk _ eiwk
Ch=—— —C +———Cf (S.20)

e—lwi _ piwg elwr — g—iwg

—iw
76 k]?

with C; := Circ [1 e S wk o—i(S-2wk ... e_i‘”k] and C’Jr := Circ [1 el(S—Dwi i(S—2)wie ... ,eiwk].

Moreover, D, C;” = D cr =0, WD+ C, =C,, and mD CiF = C;f, each
of which follows from the properties of the product of circulant matrices. Also, because ¥ (1)
is a circulant matrix, by the properties of products of circulant matrices it further holds that
CrV (1) =4 (e“r) Cp and CF ¥ (1) = ¢ (e7k) Cf. Finally as both C; and C; are S x S
circulant matrices of rank 1 we can write C} = 51_7 kSi ,’C and C = Sff ké’; ,’c The stated results

then follow immediately. [J



S.2.2 Proof of Theorem 4.1

Using the results that Cp and Cg/, are symmetric and orthogonal both to one another and to
C;and C;, i =1,...,5%, and the fact that C;C;C; = SQC’j for j = 0,.5/2, then appealing to the

multivariate invariance principle in (S.10) and using an application of the CMT we have that

=3 (snies) = QZS( LACYar) +0p (1)
=1-

n=1s S
o2 ¢ (cos[w;])?
S2 S

1
= o2y (cosluy])? / 3E (1) €38 () dr,j = 0,8/2 (S.21)
0

1
/0 JE (r) C;C;C435, (r) dr

where wg = 0, wg/y = 7 and Jg;k (r) = ﬁ‘]gj (r) for j =0,5/2.

Using Remark S.1, together with the results in (S.15) and (S.16), for the zero and Nyquist
frequencies, applications of the multivariate FCLT and CMT establish that, as N — oo,

N2 Gnges = 0eVSU (1) Ve TJEO (r) =t 0:v/5% (1) viJg (1)
= 0.V S (1) I, (r) (S.22)
N_l/ng/Z,SLrNJ+s = Usf@b( ) ( ) VS/2 \}EJES/Q (T) =: Us\/§¢ (_1> (_1)8 V:S‘/QJE;Q (T)
::aw@¢p4ﬂ—niﬁﬂ%ﬂw) (S.23)

where v| and v/ /o are defined in Remark S.1, and Jéco( ) and Jg 9.5 (r) are as defined in

Theorem 4.1. Consequently, for the MZy, k = 0,5/2 tests we obtain from (S.22) and (S.23)
that,

(SN)~1* yo sy = 0 (1) G, () (5.24)

(SN 2yl gy = 0 (-1 (1) TG, (D). (S.25)

Using the results in (S.24), (S.25) and (S.21) and the fact that A3 5 ¢2¢ (1)* and )\5/2
o) (—1)2, it therefore follows that,

¢ 2 ¢ ?
020 (coslun])? JE.,, (12 — o0 (cosfn])® [T (D] —1

MZ, = 5 = 5
2029 (cos|w]) fo {Jk e r)} dr 2f0 {ka (1")] dr

 k=0,5/2 (S.26)

where wg = 0 and wg/y = 7. The results for the MSBy, k = 0, S/2, statistics are obtained
straightforwardly from (S.21). Combining the results for MSBy, with (S.26), the limit of M2,
then follows straightforwardly.
Turning to the harmonic frequency statistics, note first that the vector of seasons repre-
. : Dh h h h
sentations of (3.9) and (3.10) with Y,fﬂ? = [yi gn (5—1) yli gn_(s 2y ,yi gn h € {a,b},



based on (S.18) and (S.19) are such that, for k =1, ..., 5%,

1 a 0 i iw - g iw i
\/SiNYIjﬁ"NJ = \/%7/) (6 wk) (e kl) 52,1{3J<€:k (r) = 7%¢ (e k) Le wkglJtlchgk (r)
= %5 () 1 | —ee € (r) +ihY —JE (1)
V2 Ve NETP R
g iw, [ ¥
= 50 ()1 I o)+ (o)
g, iw [ . *
()1 5, ()T, ) 57
and
1 £,Db O¢ —iwp —iwy, +r 3¢ o —iwp, —iwg o—1 7€
mYk,LrNJ = \/Ew (e )(e 1) SZ,kJCk (r) = \/§¢ (e )16 gl,kJCk (r)

R FV LV R

— \/iw(e )l_hkack(T) ihj; \/57/2J6k(7“)]
- % (7)1 [BJEf (1) —my' 3¢ ()]
_ %w(e_i‘“’“)l}f,ick (r) ~iJg%, ()] (5.28)

respectively, where 1 is an S x 1 vector of ones, hy and hj, are defined in Remark S.1, J Ek (r)

and JEZ (r) are defined in Lemma S.1, and where Jg, o (1) and J,g*% (r) are as defined in Theorem
4.1.

Using the consistency of the estimators S\k,AR = s{l — [qub(ei“’k)]}_l and S‘Z,AR = 5e{1 —
[(fﬁ\(e*iwk)]}*l of 0.1 (ei“’k) and 0.1 (e*i‘*’k), respectively, k = 1,..., 5%, it is then possible to

show that, in each case for k =1, ..., 5%,

(1) 455, ()] =t =T, ()

o 1
)\2 T —1/2 ¢,Da JC
( k,AR ) [ ﬁ

Yr.S|rN|+s =~ 3 ke

S x _ 1 .k 1 —
NZamD) ™2y slon s = 7 [ng,ck (r) —iJgs, (’“)} = 5Tka (),

Noting that the auxiliary variables yﬁgfl 4 and yfngf ', defined in (3.14) and (3.15) are free
from nuisance parameters, it is then straightforward to obtain the representations given for
the asymptotic distributions of the K-M2Zj, K-MSB, and K-M2Z;, statistics in (4.4), (4.5)
and (4.6), together with the results for the joint frequency statistics from section 3.3 given in

Corollary 4.1 OJ

Remark S.4: Note that the deterministic kernels considered for the de-meaning and de-
trending of the variables, have different impacts on the frequency specific OU processes. These

set of processes at each frequency for each case are summarised for convenience as follows,

Case 1 (£=1) : Jy. (r), J51'/2,cs/2 (r), Ji., (r), J (r),i=1,..,5"

Case 2 (£ =2) : J&CO (r), Jé/Q cs)s (r), J}’Ci (r), le,:l (r),i=1,..,5"
Case 3 (€=3) : Ji. (r), JZ /2052 (r), o, (r), J (r), i=1,..,5

[5.9]



where it is to be recalled that ( = 1 and { = 2 correspond to de-meaned and de-trended OU
processes, respectively. These are defined as: Jéco (r):= V/ng(’)k (r), Jg/Q css (r):= Vfg/QJgZ/Q (r),

Ty (1) =0 I (r) and J ¥ (r) = hy' 38 (r) for k=1,..., 5", O

S.3 Augmented HEGY Seasonal Unit Root Tests

Unit roots at the zero, Nyquist and harmonic seasonal frequencies imply that mo = 0, 7g/; =0
and m, = 7; =0, k = 1,..., 5%, respectively, in (2.4); see Smith et al. (2009). Consequently,
tests for the presence or otherwise of a unit root at the zero and Nyquist frequencies are
conventional lower tailed regression t-tests, denoted ¢y and tg/5, for the exclusion of ya Snts—1
and yg /2, Snts—17 respectively, from (2.4). Notice that for S = 1, ¢ is the standard non-seasonal
ADF unit root test statistic. Similarly, the hypothesis of a pair of complex unit roots at the kth
harmonic seasonal frequency may be tested by the lower-tailed ¢; and two-tailed ¢; regression
t-tests from (2.4) for the exclusion of yi’ Snts_1 and yz’gsn +s_1» respectively, or by the (upper-
tailed) regression F-test, denoted Fj, for the exclusion of both y,ﬁ Snts—1 and yzgsn 4s_q lrom
(2.4). Ghysels et al. (1994) also consider the joint frequency (upper-tail) regression F-tests
from (2.4), F_|g/2) for the exclusion of yg/2,8n+s—1’ {y§,8n+s—1}3‘tl and {y;§sn+s_1}£;1, and
Fy..1s/2] for the exclusion of yasnﬁ_l, yg/2,5n+s—1’ {y§,5n+s—1}}i1 and {nySn+s_1}f;1. The
former tests the null hypothesis of unit roots at all of the seasonal frequencies, defined as
Hp seas == ﬂ,ES:/ 12 I Hy 1., while the latter tests the null hypothesis of unit roots at the zero and all
of the seasonal frequencies, defined as Hy := ﬂ,&i/OQ ! Hy . Observe that a(L) = Ag under Hy.
The limiting null distributions of the OLS de-trended HEGY statistics are given for the
case where 1(z) = 1 in (2.1b) and accordingly p* = 0 in (2.4) by Smith and Taylor (1998). In
the case where 1)(z) is invertible with (unique) inverse ¢(z), with ¢(z) a pth order, 0 < p < oo,
lag polynomial, Burridge and Taylor (2001) and Smith et al. (2009) show that the limiting
null distributions of the OLS de-trended o, tg/; and Fy, k = 1,..., 5%, statistics from (2.4) are
as for p = 0, provided p* > p in (2.4). They show that this is not true, however, for the ¢
and t7, k = 1,..., 5, statistics whose limit distributions depend on functions of the parameters
characterising the serial dependence in ug,+s in (2.1b). Representations for the corresponding
limiting distributions under near seasonally integrated alternatives are given in Rodrigues and
Taylor (2004) and again shown to be free of nuisance parameters with the exception of the ¢
and t3, k = 1,...,.5%, statistics. Corresponding results for the local GLS de-trended HEGY-type
statistic are given in Rodrigues and Taylor (2007) and here it is also the case that the harmonic
frequency t-statistics depend on nuisance parameters arising from the serial correlation in wgy, .
Where ¢(z) is (potentially) infinite-ordered, del Barrio Castro et al. (2012) show that provided
the lag length p* in (2.4) is such that 1/p*+ (p*)3/T — 0, as T — oo, then limiting distributions
of the OLS and local GLS de-trended HEGY statistics will be of the same form as derived for

those statistics under finite p.
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S.4 Limiting Distributions of the Lag Un-augmented HEGY
Statistics

In Theorem S.1 we now provide representations for the limiting distributions of the normalised
OLS estimates together with the corresponding regression t- and F-statistics computed from
the un-augmented HEGY regression given by (2.4) with the lag augmentation length, p*, set to
zero. These representations are again indexed by the parameter ¢ which has exactly the same

meaning as was given prior to Theorem 4.1.

Theorem S.1. Let yg,+s be generated by (2.1) under Hy o and let Assumption 1 hold. Then
the HEGY-type statistics computed from (2.4) with p* = 0 are such that, as T — oo,

(r) + 0

Jo Tie, ()5, (1) + Dy [ g5 (r)dJg =

k,cp
2
L Dk {fol k,ck (r) dr—l—Dka |:Jlg*ck( )} dT}
* * AE2
f() Jlg Ck (r)d‘]lg Ck fO kck d‘]lg Ck( ) kzki’m

H [Jé,cgr)} iy [, o) arf

Thy =  k=0,..,15/2] (S.29)

and
¢ 1 7Cx C* A2—10
A f kc )d‘]k,c (7’) +Dkf Jk,c )d‘]kc ( ) 2
t . 0 hen ‘ 0 - 1/22“ =1 k=0,...|8/2]
g .
0 {fo B 7«} dr + Dy Jy [ I, ()] dr}
(S.31)
. N )\*2_70)
f Jlgc )d‘]k:c f ch )d‘]]gc ( ) ( 5 2
g oo k20 The ‘ Db ‘ e o, k=1, 515.32)

Yo {fo [ her r} dr+f0 [J,g*% ’I“)] dr}l/z

where Dy, == 0, for k =0, S/2 and Dy, == 1, for k = 1,...,5%, N2 1= v + 2>, sin(wyi)Vk,
k=1,...,5% and where the limiting processes, J&CO (r), JS (r), J,g o, (1) and J,gik (r), k=

5/2,65/2
1,...,5%, are as defined in Theorem 4.1.

Remark S.5. Representations for the limiting distributions of the corresponding joint F
statistics, Fy, k =1,...,5%, F|_|g/2) and Fy_|g/2| are given by the average of the squares of the
limiting distributions for the t-statistics involved in their formulation given in Theorem S.1. So
that, for example, F}, => 3 (Ti)z + (Tzc)Q], k=1,.., 5% O

Remark S.6. The results in Theorem S.1 (and consequently also in Remark S.5) show that the
limiting distributions (under both null and local alternatives) of the uncorrected un-augmented
HEGY tests depend on nuisance parameters which arise when ug, s is weakly dependent.
When wugy, s is IID, which occurs where 9(z) = 1, then the true lag order in (2.4) is p* = 0,
and the representations in (S.29)-(S.32) are pivotal because here A2 = o, k = 0,...,S5/2],
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and )\22 =, k =1,...,5" Indeed, these pivotal forms, for the statistics at the zero and
Nyquist frequencies and for all of the F-type tests coincide with those which obtain from
the appropriately augmented HEGY tests discussed in section S.3. Relative to these pivotal
distributions, we see that in the presence of weak dependence in ug, s the un-augmented HEGY
statistics have limiting distributions whose numerator includes an additional term arising from
the difference between the short run variance of ug,+s and the long run variance(s) of ugy+s
at the frequency component relating to that statistic and, in the case of the t-statistics (and,
hence, the F-statistics), are also scaled by the ratio of the long and short run variances of ugy s

at that frequency. O

The representations given for the limiting distributions of the un-augmented HEGY statis-
tics in Theorem S.1 are useful because they enable us to see immediately how, given consistent
estimators for 7o, A7, k = 0,...,[5/2], and A\;?, k = 1,...,S*, these statistics can be trans-
formed to obtain modified statistics whose limiting distributions coincide with those which
obtain in the case where ¢(z) = 1. To that end in section S.5 we now propose seasonal ana-

logues of the non-seasonal PP tests.

S.5 Phillips-Perron-Type Seasonal Unit Root Tests

The finite sample size control of seasonal Phillips-Perron type tests under weak dependence was
found to be very poor relative to both augmented HEGY tests and the seasonal M tests; see
the accompanying working paper, del Barrio Castro, Rodrigues and Taylor (2015).

Computation of seasonal versions of the non-seasonal PP unit root tests will require con-
sistent estimators of the nuisance parameters which feature in the limit distributions, given in
Theorem S.1, of the un-augmented HEGY statistics which obtain from estimating (2.4) with
p* set to zero. Consistent sums-of-covariances and ASD estimators for )\z, kE=0,...,15/2],
were discussed in section 3.2. Corresponding estimators for )\}:,2, k=1,...,5% which are also
consistent under the conditions given in section 3.2, can be defined as follows, where notation
is the same as used in section 3.2. First, the sum-of-covariances estimators

T-1

MNiya = > w(i/m)jcos(n/2+wri),  k=1,...,5". (S.33)
j=—T+1

Second the corresponding ASD estimators

2
A2, = Se k=1,...,8"%

kAR *— . - 2 . - 27
(1= dycos ([jun+3]) )+ {2 by sin ([jer + 7)) }

(S.34)
Based on the estimators 5\37,1, 5‘%/27h’ S\%h and X,’fh, h=WA, AR, k = 1,...,5%, defined
in (3.3), (S.33), (3.4), (3.5) and (S.34), seasonal analogues of the non-seasonal PP unit root

statistics can be derived from the functional forms of the limit distributions of the un-augmented
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HEGY statistics given in Theorem S.1, as follows:

()1 ¢ R
._ X ! ¢ _
Zii= Thy— TQS—s—Zl (Vhisnrer) |+ F=0,.18/2) (835)
(X,’fh —’?0) [ T 9] -
Zim  Tii—— o Y (Wsue) | - K=1.08" (8.36)
L Sn+s=1 J
and
1/2 A2 _%> M52 T ;172
— T ( kih k.h 3 _
Zy= Pt D> (e . k=0,...,[S/2/(S.37)
k,h L Sn+s=1 J
1/2 (5\*2 _%) M52 T .12
x Yo s kh k,h * *
zr = g Y <y,fSn+S_1> . k=1,...,5 (S.38)
A 2 T :
k.h L Sn+s=1 J

where g is the OLS residual variance estimate from estimating (2.4) with p* set to zero.

Remark S.7. Notice that for S =1, Z, in (S.35) and Z;, in (S.37) reduce to the non-seasonal

unit root tests proposed in PP and defined in section 3.1. g

Remark S.8. PP-type analogues of the F-type statistics Fy, k = 1,...,5%, Fy |g5/2 and
F,...|s/2) discussed in section S.3 can also be constructed using the corrected normalised coef-
ficient estimate statistics in (S.35) and (S.36). With an obvious notation we will denote these
statistics as Fppg, k =1,...,5%, Fpp1..s/2), and Fpp..|s/2)- These statistics can be defined

generically as follows: )
Fpp:= —(RZ) [RAY'YR'] (RZ) (S.39)
v
where v denotes the number of restrictions being tested; Z := [Zy, Z1, Z{, Z2, Z5, ..., Zg=, Z s, ZS/Q]’

is S x 1Y = [yoly1lyilyz2ly3| - .- [ys+|ye-
T x 1 vectors with generic element nynJrS_l, and y; and y;, 7 =1,...,5" are T' x 1 vectors with

yg/z] is a T x S matrix where y;, ¢ = 0,.5/2, are

generic elements yf Sngs_1 and y:gn o1, respectively; A is an S x S diagonal matrix such that,
A= T*de‘ag{1/A37h,1/A§,h,1/A§7h,1/A§7h,1/A37h ...,1/)\2%,1/)\2*7,1,1//\%/2’,1}, and finally

R is the relevant v x S selection matrix; for example, setting

Jo1o00 .0
“loo 10 ...0]

yields the Fpp statistic, whilst setting R = Ig, where I, denotes the ¢ x ¢ identity matrix for
any positive integer ¢, results in Fppg. |s5/2]- O

S.6 Asymptotic Results for the Seasonal PP Tests

In Theorem S.2 we now present the large sample distributions of the seasonal PP-type unit root
test statistics proposed in section S.5. In particular, we show that these have pivotal limiting
distributions whose form coincides with those which obtain in the case where the shocks are

serially uncorrelated.
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Theorem S.2. Let the conditions of Theorem 4.1 hold. Then, as T — oo, the PP-type coeffi-

cient statistics introduced in section S.2 and Remark S.4 satisfy,
(Do) [y T (VAT (1) + Di fy T, ()T, ()]
S [ (r)]er—f—Dk s, o) ar
S [ R e R o
fo [ E,ck 7"} dr‘*’fo [‘]Ig*ck )} dr

while the corresponding t- and F—type statistics satisfy

1 * *
fO Jlg,ck (T)d‘]lg,ck( +Dk fO Jlgck )d‘]lgck( ) =4

Zk:>

L k=0,...,15/2(S.40)

o 1 2 9 12 ko k=0,..5/2] (S.42)
{fo [T <7">] dr+Ds fy {Jé’;k< ) dr}
Zt*k fO kck kck f() kck k.ci ( ) ::7;'{7 k‘:l,...,S* (8.43)

{f(]l [Jlg’ck (T)] dr + fo [Jlg*ck )}2 dr}1/2

Fppp = ;{(7;4)2+(7;*<)2], k=1,...,5° (S.44)
Lo, s )
Fppj..|s;2 = 5= Z <7Z<> "‘Z(ﬁ*C) , 7=0,1 (S.45)
i=j k=1

where Dy, = 0, for k =0,5/2 and Dy =1, for k =1,...,S*, and the limiting processes, ng (r),
JS (r) and Jgik(r), k=1,...,5* are as defined in Theorem 4.1.

TS 3.05, s Ty
Remark S.9: The limiting null distributions of the PP-type statistics from section S.5 are
obtained on setting ¢ = 0 (so that, correspondingly, Hy; holds) in the representations given
in Theorem S.2. These limiting null distributions coincide with those reported in Smith et al.
(2009) and Rodrigues and Taylor (2007), for OLS and local GLS de-trending respectively, for
the corresponding HEGY statistics from (2.4) in the case where ug,,+5 is serially uncorrelated.
Notice also that, contrary to what is shown in, inter alia, Burridge and Taylor (2001) and del
Barrio Castro, Osborn and Taylor (2012), for the corresponding ¢; and ¢; augmented HEGY
statistics from (2.4), when wug,;s is serially correlated the limiting null distributions of the

harmonic frequency PP-type test statistics Zy, Z;,, Z; and Z; , k = 1,...,5%, are free from

th?
nuisance parameters. Indeed, the asymptotic null dlStI‘lbuthn: of Z;; and Zj, coincide with
those reported for the augmented HEGY ¢, and ¢}, statistics, k = 1,...,.5*, in Burridge and
Taylor (2001) and del Barrio Castro, Osborn and Taylor (2012) for the case where a; = 0
and b; = 1; that is, in the absence of serial correlation in ug,+s. The foregoing asymptotic
equivalence results between the HEGY and corresponding PP-type statistics also hold under

the local alternative, Hi . O
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Remark S.10: Selected critical values for tests based on the statistics in (S.40)-(S.43) and
(S.44)-(S.45) (for the quarterly, S = 4, and monthly, S = 12, cases) are provided for the case of
OLS de-trended tests in HEGY, Ghysels et al. (1994) and Smith and Taylor (1998), and for GLS
de-trended tests in Rodrigues and Taylor (2007). Notice that the limiting null distribution in
(S.40) for both k = 0 and k = |.S/2] coincides with the limiting null distribution of the standard
normalised bias statistic of Dickey and Fuller (1979), with relevant critical values provided in
Fuller (1996). Furthermore, the limiting null distribution in (S.40), for k = 1, ..., S*, coincides
with the limiting null distribution of the Dickey et al. (1984) unit root test statistic, from where

relevant critical values can be obtained. O

S.7 Proofs of Theorems S.1 and S.2

First re-write (2.4) with p* set to zero in vector form, viz, y = Y/, + u, where y is a T' x 1

vector with generic element Agygwrs; Y = [yoly1|yilyalys| - lys|y&- |y5/2] is a T'x S matrix
where y;, i =0, ..., [S/2] are T' x 1 vectors with generic elements y§5n+8_1, andy;,i=1,..,5"
are T x 1 vectors with generic elements yf%n 451, respectively, and [y = [0, M7}, T2, T3,
...,7r5*,7r§*,7r5/2’]/. The OLS estimator from the un-augmented form of (2.4), may then be
defined via,

Thy == [T72Y'Y] " [T'Yy]. (S.46)

Because T72Y'Y weakly converges to an S x S diagonal matrix, this as a consequence of the
asymptotic orthogonality of the HEGY auxiliary variables discussed previously, we may there-
fore separately derive the large sample behavior of the OLS estimators of 7, j = 0, ..., |S/2],

and 77, i = 1,...,5* To that end, the so-called normalised bias statistics then satisfy the

following,
T-1y/ 715N 0 - y§ Asyi
37 T2 12 sm1-5 (yj,5n+s—1)
(S.47)
and
Ty TN S0 v 1 Asyt
T%\:ﬂ _ = y*z/ y* +0p (1) _ Zn 1 Zs 1-S J4,Sn+s—1 S;H—s +Op (1)7 i — 1’ ,S*
Ty’ 9N 0
Yi¥i T2 anl Zs:l—S (yzgn—l-s—l)
(S.48)
Consider first the numerators of (S.47) and (S.48). For (S.47) observe first that,
N 0 N
TS N e 1Bt =T Y Yl \CGASYE + A +0, (1), j=0,5/2 (S.49)
n=1s=1-5 n=1

where A := §~1 25;11 (S — i) cos [iw;] N7t ij:l (ugﬂnugn), and where AgY; := [Asygn_(s_l),
Ag ygn_(s_Q), vy Ag ygn]/. Notice then that A; — ¥, = S§~1 Zf:_ll (S — i) cos [iw;] ~; for
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wj =2, j =0,5/2. Similarly, for j = 1,...,5*, we have that

N 0
Ty
n=1s=1-S5
N 0 N
— * — & = -~
T lz Z yjfgn—l—s—lAsygn—i-s = T 1ZYnl_10jA5YnE+Aj+0p(1) (S.51)
n=1s=1-5

n=1

N
_ 13
y§,5n+s—1Asygn+s =T ! Z Yn,—lchSY;? + Aj + Op (1) (850)

n=1

where A := §~! 25—1 (S —i)cos [iwj] N"T N (ug mugn> and A := —S~1 Zf:_ll (S — 1) sin [iwj]

D DN (ufq musn> We observe that A; — \Ill St Zf:_ll (S — i) cos [iw;] v and Aj —

2. =8~ Zi:l (S — i) sin [iw;] v; for w; = 2;5], j=1...,5%

Again using (S.10), applications of the CMT, the identities CxCyCy = S?Cy, for k = 0, 5/2,

2 — 2 — = 2 — = = 2

and C3C;C; Ez(é) Gy, GiCiC5 = (2%) €505 GG = ;(%) Cj, C; GiC; = (ﬁ)ﬁ Cj,
CiC;C = (3)° Cj, CjC;C4= ~ (5)” ;. C5C5C; = (5)” Cj and T5C,C; = (3)° C; for
j =1,...,5"% the orthogonality between the circulant matrices and Theorem 2.6 in Phillips
(1988), the following results are obtained:
i) For the zero and Nyquist frequencies (k = 0, .5/2),

N 2 1 00
_ ¢ oz 1) (cos|wyg
T3 Y CAsYE = 5(32”) / 35 (r) CLCKCKE (1) dIE, (r g (Uf’c Uﬁ)
n=1 G=
% (cosn))? [ JE () Cad (r)+1§:E(Uf’c vf)
g k 0 Cre kGJdc, S < - 1 VYkY
]:
1 oo
* * 1
— o2y (cosfuw])? /0 35 ) Gt () + g S B (UFO0)  (85)
j=2
where wy = 0 and wg/, = 7.
ii) For the harmonic frequencies (5 = 1,...,5%),
N ¢ o2 [2\2 1
T‘len’_leAsY§ = ? <S> bj/ (r)' CiC; (b;C + a;C;) dIs (1)
n=1 0
0'2 2 2 1 A=, >
+5 <s> aj/o 3 (1) T,C; (b;C) + a,C) d Skz (v7e;ur)
2 1 2 1
- %fb? / JE, (r) CddE, (r)+%fajbj / JE, (r) CjdJe, (r)
0 0
92 o (M5 (voart (- Tan [ ¢
+—=a Jo. (r) CjdJI. () a;b; (r) C,;dJs. (r)
S ) S
1 & £ 3
+§ZE<U1’C]Uk)
k=2
2 2 2
oz \aj + b5 ! 1 & 3 ¢
_ 7( . >/0 3¢ ()’ C;a38! (r)+§ZE(U1’CjUk>, (S.53)
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1
JE (r) CiC; (b;C5 + a;C;) dIE, (r)
n=1

1}: & Ug
Y IC ASY = ?
2
€

N ~—r
[\

S

o\

_ %y [ 5 oy Tart PO BT
- ? i 0 ¢; (T) J89¢; (T) - ? j g 0 ¢ (T) J8d¢; (T)

1 o2 -
oty [0 0 Coant )+ % [ 98 0 Tyt 0

o (a?+02) f1 %
_ a<]2 ’>/ 38 (r) Cjd3 (r Z (vfe,us)
0 :
where J&! () == ﬁ 5 ().
Moreover, for k =0 and k = S/2,
1 € e - , 1,5
g ZE <U1 C’kUj> + Uy, = Zcos [iwg] i = 5(/\k — Vi) (S.55)
j=2 i=1
and for j =1,2,...,5%,
1 00 00 ' 1
5 Y E (Uf’@U,f) +0) = D cos[(S—i)wj]yi = Z()\? — ) (S.56)
k=2 =1
EZE (Uf/CjU/g) —i—\I/? = —Zsm[(S—z)wj] i = Z(/\jz - 70) (S.57)
k=2 i=1
with w; = ng.

In the case of the denominator of (S.47) the required results for j = 0 and j = S/2 are
collected in (S.21). Consider next the denominators of (S.47) and (S.48) over the values 1, ..., S*
of the index parameters j and i, respectively. Here we have the results that C;, ¢ = 1, ..., 5%, is
symmetric and that U; = —C,;, and noting also that C; and C; are orthogonal to Cp and Cs/2
and that C;C;C; = (5)* ¢y, GiCiCi = (5)° Ty, T0iC; = — (5)7 T, and T0,C; = (5)° .

Using these results we have that,

—2 - - 3 2 -2 al S & 1
T Z Z (yi,Sn-&-s—l) =T Z 9 (Yn—lci Yn—l) + 0p (1)
n=1s=1-5 n=1
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2 1
L _ 1 _
) aj/o (1) T5C5 (6,Cy +a;C5) d3E, (1) + 5 Y B (UF'C,Uf )
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- _- —& [ = 2 .-
T ;<2>( 1CiYoy) S2<2>bz <s> 3L 0) GO () drt
2 2 1
e (S (2 / ¢ (Y CLOTLTE
<2 <2> bia; (S) ; Je, (1) CiCiCJe, (r) dr +
2 2 1
2 (SN (2 / $ (T OO
o2 <2> bia; (S) ; Je, (1) CyCiCJe, (r) dr +
o2 (S\ 5 (2 2t ¢
5Q<2>ai<s)té 3 () T.OTIE (r)d
2 (2 402) [1
= W/ Jgr (r)'CiJgr (r)dr (S.58)
0
where i = 1,..., 5% and J&/ (r) := —2=3%, (»).

Combining the results in (S.49)-(S.57) with (S.21) and (S.58) we establish that for k = 0
(wo =0) and k = S/2 (wg/s = 7),

Jo J& (r) Crddé: (r) + (3252 cos [iwg] 7:) /o2 [ (cos[wi]))?

T, = S.59
g JE3E () CRIE () dr (5.59)
and for j = 1,..., 5 that,
o2 (a +b%) € (ry &t i~ :
SEATRE VAR C;dJE! > S — i) wil v
% = fo = ib (7 ) (Z 2, cos [(S — 1) wj]vi) (5.60)
fo I& () ;38 (r) dr
o (a +b7) € ( & o :

7 “”’ fOJfT CJfT()dr

Next observe that the corresponding t-statistics from the un-augmented form of (2.4) can be

written as

N 0
,\—12 —
tk = /Tﬂk T 22 Z (ykSnJrS)

n=1s=1-5

1/2
+op(1), k=0,...[8/2]  (S.62)

—_

N 0
* /\*1/2 % —2
ti = TT(' T Z Z (yzSn—l—s)
=1-

L n=1s

1/2
+op(1), i=1,...,5" (S.63)

where 7 is the usual OLS variance estimator from the un-augmented form of (2.4); that is, 7p :=
VD D 222175(ﬁ§n+5)2. Observe from the results in (S.59)-(S.61) that ﬁj =0y (1) and 7} =
0p (1), and hence 7y := T~1 27]:[:1 Zgzl_S(Asy§n+s)2 +o0p (1) so that 7y RN oz (1 + Z] 1 1/}2>
Substituting the result that 7g 2 o? (1 + Z;’il 1/)]2-), the results in Remark S.1, and the
results in (S.59)-(S.61), (S.21) and (S.58) into (S.62)-(S.63) and using applications of the CMT,
after some simple manipulations, we finally obtain the stated results in Theorem S.1, where we
have defined the independent standard OU processes Jf’cl, (r) = vgJEj (r),i=0,5/2, J;:Cj (r) =
h}Jgr (r) and J]@:Zj (r) = h;“Jg (r) where h’ and h}’ are the first and second rows of v’
respectively, for j = 1,...,5* (see Remarks S.1 and S.3). The proof of Theorem S.2 then
follows directly from these results and the consistency properties of the long and short run

variance estimators used in the construction of the PP-type statistics. [
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S.8 Additional Monte Carlo Results

Figures S.1-S.4 report complementary finite sample local power figures to those given in Figures
3-6 in the main text for the case where the tests are not size-adjusted but rather were run using
the relevant asymptotic critical values (obtained from the sources given in Remarks 4.2 and
4.3). The Monte Carlo DGP and set-up of these experiments were otherwise exactly as detailed

in Section 5.2.
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