44 research outputs found

    The SNAP-25 gene is associated with cognitive ability: evidence from a family-based study in two independent Dutch cohorts

    Get PDF
    The synaptosomal-associated protein of 25 kDa (SNAP-25) gene plays an integral role in synaptic transmission, and is differentially expressed in the mammalian brain in the neocortex, hippocampus, anterior thalamic nuclei, substantia nigra and cerebellar granular cells. Recent studies have suggested a possible involvement of SNAP-25 in learning and memory, both of which are key components of human intelligence. In addition, the SNAP-25 gene lies in a linkage area implicated previously in human intelligence. In two independent family-based Dutch samples of 391 (mean age 12.4 years) and 276 (mean age 37.3 years) subjects, respectively, we genotyped 12 single-nucleotide polymorphisms (SNPs) in the SNAP-25 gene on 20p12-20p11.2. From all individuals, standardized intelligence measures were available. Using a family-based association test, a strong association was found between three SNPs in the SNAP-25 gene and intelligence, two of which showed association in both independent samples. The strongest, replicated association was found between SNP rs363050 and performance IQ (PIQ), where the A allele was associated with an increase of 2.84 PIQ points (P=0.0002). Variance in this SNP accounts for 3.4 % of the phenotypic variance in PIQ. © 2006 Nature Publishing Group All rights reserved

    Huntingtin gene repeat size variations affect risk of lifetime depression

    Get PDF
    Huntington disease (HD) is a severe neuropsychiatric disorder caused by a cytosine-adenine-guanine (CAG) repeat expansion in the HTT gene. Although HD is frequently complicated by depression, it is still unknown to what extent common HTT CAG repeat size variations in the normal range could affect depression risk in the general population. Using binary logistic regression, we assessed the association between HTT CAG repeat size and depression risk in two well-characterized Dutch cohorts─the Netherlands Study of Depression and Anxiety and the Netherlands Study of Depression in Older Persons─including 2165 depressed and 1058 non-depressed persons. In both cohorts, separately as well as combined, there was a significant non-linear association between the risk of lifetime depression and HTT CAG repeat size in which both relatively short and relatively large alleles were associated with an increased risk of depression (β = −0.292 and β = 0.006 for the linear and the quadratic term, respectively; both P < 0.01 after adjustment for the effects of sex, age, and education level). The odds of lifetime depression were lowest in persons with a HTT CAG repeat size of 21 (odds ratio: 0.71, 95% confidence interval: 0.52 to 0.98) compared to the average odds in the total cohort. In conclusion, lifetime depression risk was higher with both relatively short and relatively large HTT CAG repeat sizes in the normal range. Our study provides important proof-of-principle that repeat polymorphisms can act as hitherto unappreciated but complex genetic modifiers of depression

    The SPINK gene family and celiac disease susceptibility

    Get PDF
    The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was determined for all four SPINK genes by quantitative reverse-transcription polymerase chain reaction in duodenal biopsy samples from untreated (n = 15) and diet-treated patients (n = 31) and controls (n = 16). Genetic association of the four SPINK genes was tested within a total of 18 haplotype tagging SNPs, one coding SNP, 310 patients, and 180 controls. The SPINK4 study cohort was further expanded to include 479 CD cases and 540 controls. SPINK4 DNA sequence analysis was performed on six members of a multigeneration CD family to detect possible point mutations or deletions. SPINK4 showed differential gene expression, which was at its highest in untreated patients and dropped sharply upon commencement of a gluten-free diet. Genetic association tests for all four SPINK genes were negative, including SPINK4 in the extended case/control cohort. No SPINK4 mutations or deletions were observed in the multigeneration CD family with linkage to chromosome 9p21-13 nor was the coding SNP disease-specific. SPINK4 exhibits CD pathology-related differential gene expression, likely derived from altered goblet cell activity. All of the four SPINK genes tested do not contribute to the genetic risk for CD in the Dutch population

    Celiac disease: how complicated can it get?

    Get PDF
    In the small intestine of celiac disease patients, dietary wheat gluten and similar proteins in barley and rye trigger an inflammatory response. While strict adherence to a gluten-free diet induces full recovery in most patients, a small percentage of patients fail to recover. In a subset of these refractory celiac disease patients, an (aberrant) oligoclonal intraepithelial lymphocyte population develops into overt lymphoma. Celiac disease is strongly associated with HLA-DQ2 and/or HLA-DQ8, as both genotypes predispose for disease development. This association can be explained by the fact that gluten peptides can be presented in HLA-DQ2 and HLA-DQ8 molecules on antigen presenting cells. Gluten-specific CD4+ T cells in the lamina propria respond to these peptides, and this likely enhances cytotoxicity of intraepithelial lymphocytes against the intestinal epithelium. We propose a threshold model for the development of celiac disease, in which the efficiency of gluten presentation to CD4+ T cells determines the likelihood of developing celiac disease and its complications. Key factors that influence the efficiency of gluten presentation include: (1) the level of gluten intake, (2) the enzyme tissue transglutaminase 2 which modifies gluten into high affinity binding peptides for HLA-DQ2 and HLA-DQ8, (3) the HLA-DQ type, as HLA-DQ2 binds a wider range of gluten peptides than HLA-DQ8, (4) the gene dose of HLA-DQ2 and HLA-DQ8, and finally,(5) additional genetic polymorphisms that may influence T cell reactivity. This threshold model might also help to understand the development of refractory celiac disease and lymphoma

    Association Analysis of the Extended MHC Region in Celiac Disease Implicates Multiple Independent Susceptibility Loci

    Get PDF
    Celiac disease is a common autoimmune disease caused by sensitivity to the dietary protein gluten. Forty loci have been implicated in the disease. All disease loci have been characterized as low-penetrance, with the exception of the high-risk genotypes in the HLA-DQA1 and HLA-DQB1 genes, which are necessary but not sufficient to cause the disease. The very strong effects from the known HLA loci and the genetically complex nature of the major histocompatibility complex (MHC) have precluded a thorough investigation of the region. The purpose of this study was to test the hypothesis that additional celiac disease loci exist within the extended MHC (xMHC). A set of 1898 SNPs was analyzed for association across the 7.6 Mb xMHC region in 1668 confirmed celiac disease cases and 517 unaffected controls. Conditional recursive partitioning was used to create an informative indicator of the known HLA-DQA1 and HLA-DQB1 high-risk genotypes that was included in the association analysis to account for their effects. A linkage disequilibrium-based grouping procedure was utilized to estimate the number of independent celiac disease loci present in the xMHC after accounting for the known effects. There was significant statistical evidence for four new independent celiac disease loci within the classic MHC region. This study is the first comprehensive association analysis of the xMHC in celiac disease that specifically accounts for the known HLA disease genotypes and the genetic complexity of the region

    Polymorphism analysis of the CTLA-4 gene in paracoccidioidomycosis patients

    Get PDF
    The CTLA-4 protein is expressed in activated T cells and plays an essential role in the immune response through its regulatory effect on T cell activation. Polymorphisms of the CTLA-4 gene have been correlated with autoimmune, neoplastic and infectious illnesses. This work aimed to verify possible associations between single nucleotide polymorphisms (SNPs) in CTLA-4, -318C/T in the promoter and +49A/G in exon 1 and paracoccidioidomycosis (PCM) caused by Paracoccidioides brasiliensis. For this purpose, 66 chronic form PCM patients and 76 healthy controls had their allele, genotype and haplotype frequencies determined. The genetic admixture structure of the patients and controls was evaluated to eliminate ancestral bias. The comparison of frequencies indicated no significant differences between patients and controls that could link the SNPs to PCM. Groups were admixture matched with no difference observed in population ancestry inference, indicating that the absence of association between CTLA-4 polymorphisms and PCM could not be attributed to ancestral bias. This study showed that there was no association between the CTLA-4 SNPs -318 and +49 and the resistance or susceptibility to PCM

    Brain size regulations by cbp haploinsufficiency evaluated by in-vivo MRI based volumetry

    Full text link
    The Rubinstein-Taybi Syndrome (RSTS) is a congenital disease that affects brain development causing severe cognitive deficits. In most cases the disease is associated with dominant mutations in the gene encoding the CREB binding protein (CBP). In this work, we present the first quantitative analysis of brain abnormalities in a mouse model of RSTS using magnetic resonance imaging (MRI) and two novel self-developed automated algorithms for image volumetric analysis. Our results quantitatively confirm key syndromic features observed in RSTS patients, such as reductions in brain size (-16.31%, p < 0.05), white matter volume (-16.00%, p < 0.05), and corpus callosum (-12.40%, p < 0.05). Furthermore, they provide new insight into the developmental origin of the disease. By comparing brain tissues in a region by region basis between cbp(+/-) and cbp(+/+) littermates, we found that cbp haploinsufficiency is specifically associated with significant reductions in prosencephalic tissue, such us in the olfactory bulb and neocortex, whereas regions evolved from the embryonic rhombencephalon were spared. Despite the large volume reductions, the proportion between gray-, white-matter and cerebrospinal fluid were conserved, suggesting a role of CBP in brain size regulation. The commonalities with holoprosencephaly and arhinencephaly conditions suggest the inclusion of RSTS in the family of neuronal migration disorders.We are grateful to Begona Fernandez for her excellent technical assistance. We would like to thank S. Sawiak (Wolfson Imaging Centre, University of Cambridge, Cambridge, United Kingdom) for the mouse brain tissue probability maps and the SPMmouse plug-in, and to N. Kovacevic (Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada) for the atlas of the mouse brain. Supported by grants from the Spanish MINECO to S.C. (BFU 2012-39958) and MINECO and FEDER to D.M. (TEC 2012-33778) and from MINECO (SAF2011-22855) and Generalitat Valenciana (Prometeo/2012/005) to A.B. The Instituto de Neurociencias is "Centre of Excellence Severo Ochoa".Ateca Cabarga, JC.; Cosa, A.; Pallares, V.; Lopez-Atalaya, JP.; Barco, A.; Canals, S.; Moratal Pérez, D. (2015). Brain size regulations by cbp haploinsufficiency evaluated by in-vivo MRI based volumetry. Scientific Reports. 5. https://doi.org/10.1038/srep16256S5Rubinstein, J. H. & Taybi, H. Broad thumbs and toes and facial abnormalities. A possible mental retardation syndrome. Am J Dis Child 105, 588–608 (1963).Van Belzen, M., Bartsch, O., Lacombe, D., Peters, D. J. & Hennekam, R. C. Rubinstein-Taybi syndrome (CREBBP, EP300). Eur J Hum Genet. 19, preceeding 118–120 (2011).Hennekam, R. C. Rubinstein-Taybi syndrome. Eur J Hum Genet. 14, 981–985 (2006).Wiley, S., Swayne, S., Rubinstein, J. H., Lanphear, N. E. & Stevens, C. A. Rubinstein-Taybi syndrome medical guidelines. Am J Med Genet A. 119A, 101–110 (2003).Michail, J., Matsoukas, J. & Theodorou, S. Pouce bot arqué en forte abduction-extension et autres symptomes concomitants. Rev Chir Orthop 43, 142–146 (1957).Barco A. The Rubinstein-Taybi syndrome: modeling mental impairment in the mouse. Genes Brain Behav 6, 32–39 (2007).Lopez-Atalaya, J. P., Valor, L. M. & Barco, A. Epigenetic factors in intellectual disability: the Rubinstein-Taybi syndrome as a paradigm of neurodevelopmental disorder with epigenetic origin. Prog Mol Biol Transl Sci. 128, 139–176 (2014).Petrij, F., Giles, R. H., Dauwerse, H. G., Saris, J. J., Hennekam, R. C. M., Masuno, M., Tommerup, N., Van Ommen, G. J. B., Goodman, R. H., Peters, D. J. M. & Breuning, M. H. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376, 348–351 (1995).Zimmermann, N., Acosta, A. M., Kohlhase, J. & Bartsch, O. Confirmation of EP300 gene mutations as a rare cause of Rubinstein-Taybi syndrome. Eur J Hum Genet. 15, 837–842 (2007).Bartholdi, D. et al. Genetic heterogeneity in Rubinstein-Taybi syndrome: delineation of the phenotype of the first patients carrying mutations in EP300. J Med Genet. 44, 327–333 (2007).Roelfsema, J. H. et al. Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in both the CBP and EP300 genes cause disease. Am J Hum Genet. 76, 572–580 (2005).Tanaka, Y., Naruse, I., Maekawa, T., Masuya, H., Shiroishi, T. & Ishii, S. Abnormal skeletal patterning in embryos lacking a single Cbp allele: a partial similarity with Rubinstein-Taybi syndrome. Proc Natl Acad Sci USA 94, 10215–10220 (1997).López-Atalaya, J. P. et al. CBP is required for environmental enrichment-induced neurogenesis and cognitive enhancement. EMBO J 30, 4287–4298 (2011).Wang, J. et al. CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein-Taybi syndrome brain. Dev Cell. 18, 114–125 (2010).Marzuillo, P. et al. Brain magnetic resonance in the routine management of Rubinstein-Taybi syndrome (RTS) can prevent life-threatening events and neurological deficits. Am J Med Genet A. 164A, 2129–2132 (2014).de Kort, E., Conneman, N. & Diderich, K. A case of Rubinstein-Taybi syndrome and congenital neuroblastoma. Am J Med Genet A. 164A, 1332–1333 (2014).Lee, J. S. et al. Clinical and mutational spectrum in Korean patients with Rubinstein-Taybi syndrome: the spectrum of brain MRI abnormalities. Brain Dev. 37, 402–408 (2015).Marzuillo, P. et al. Novel cAMP binding protein-BP (CREBBP) mutation in a girl with Rubinstein-Taybi syndrome, GH deficiency, Arnold Chiari malformation and pituitary hypoplasia. BMC Med Genet. 14, 28 (2013). 10.1186/1471-2350-14-28.Li, Z. et al. Phenotypic expansion of the interstitial 16p13.3 duplication: a case report and review of the literature. Gene. 531, 502–505 (2013).Demeer, B. et al. Duplication 16p13.3 and the CREBBP gene: confirmation of the phenotype. Eur J Med Genet. 56, 26–31 (2013).Kumar, S., Suthar, R., Panigrahi, I. & Marwaha, R. K. Rubinstein-Taybi syndrome: Clinical profile of 11 patients and review of literature. Indian J Hum Genet. 18, 161–166 (2012).Giussani, C. et al. The association of neural axis and craniovertebral junction anomalies with scoliosis in Rubinstein-Taybi syndrome. Childs Nerv Syst. 28, 2163–2168 (2012).Parsley, L., Bellus, G., Handler, M. & Tsai, A. C. Identical twin sisters with Rubinstein-Taybi syndrome associated with Chiari malformations and syrinx. Am J Med Genet A. 155A, 2766–2770 (2011).Thienpont, B. et al. Duplications of the critical Rubinstein-Taybi deletion region on chromosome 16p13.3 cause a novel recognisable syndrome. J Med Genet. 47, 155–161 (2010).Kim, S. H., Lim, B. C., Chae, J. H., Kim, K. J. & Hwang, Y. S. A case of Rubinstein-Taybi Syndrome with a CREB-binding protein gene mutation. Korean J Pediatr. 53, 718–721 (2010).Wójcik, C. et al. Rubinstein-Taybi syndrome associated with Chiari type I malformation caused by a large 16p13.3 microdeletion: a contiguous gene syndrome? Am J Med Genet A. 152A, 479–483 (2010).Wachter-Giner, T., Bieber, I., Warmuth-Metz, M., Bröcker, E. B. & Hamm, H. Multiple pilomatricomas and gliomatosis cerebri--a new association? Pediatr Dermatol. 26, 75–78 (2009).Verstegen, M. J., van den Munckhof, P., Troost, D. & Bouma, G. J. Multiple meningiomas in a patient with Rubinstein-Taybi syndrome. Case report. J Neurosurg. 102, 167–168 (2005).Agarwal, R., Aggarwal, R., Kabra, M. & Deorari, A. K. Dandy-Walker malformation in Rubinstein-Taybi syndrome: a rare association. Clin Dysmorphol. 11, 223–224 (2002).Ihara, K., Kuromaru, R., Takemoto, M. & Hara, T. Rubinstein-Taybi syndrome: a girl with a history of neuroblastoma and premature thelarche. Am J Med Genet. 83, 365–366 (1999).Sener, R. N. Rubinstein-Taybi syndrome: cranial MR imaging findings. Comput Med Imaging Graph 19, 417–418 (1995).Robinson, T. W., Stewart, D. L. & Hersh, J. H. Monozygotic twins concordant for Rubinstein-Taybi syndrome and implications for genetic counseling. Am J Med Genet. 45, 671–673 (1993).Guion-Almeida, M. L. & Richieri-Costa, A. Callosal agenesis, iris coloboma and megacolon in a Brazilian boy with Rubinstein-Taybi syndrome. Am J Med Genet. 43, 929–931 (1992).Albanese, A. et al. [Role of diagnostic imaging in Rubinstein-Taybi syndrome. personal experience with 8 cases]. Radiol Med. 81, 253–261 (1991).Rubinstein, J. H. Broad thumb-hallux (Rubinstein-Taybi) syndrome 1957-1988. Am J Med Genet Suppl. 6, 3–16 (1990).Hennekam, R. C., Stevens, C. A. & Van de Kamp, J. J. Etiology and recurrence risk in Rubinstein-Taybi syndrome. Am J Med Genet Suppl. 6, 56–64 (1990).Bonioli, E., Bellini, C. & Di Stefano, A. Unusual association: Dandy-Walker-like malformation in the Rubinstein-Taybi syndrome. Am J Med Genet. 33, 420–421 (1989).Beluffi, G., Pazzaglia, U. E., Fiori, P., Pricca, P. & Poznanski, A. K. [Oto-palato-digital syndrome. Clinico-radiological study]. Radiol Med. 74, 176–184 (1987).Cantani, A. & Gagliesi, D. Rubinstein-Taybi syndrome. Review of 732 cases and analysis of the typical traits. Eur Rev Med Pharmacol Sci. 2, 81–87 (1998).Viosca, J., Lopez-Atalaya, J. P., Olivares, R., Eckner, R. & Barco, A. Syndromic features and mild cognitive impairment in mice with genetic reduction on p300 activity: Differential contribution of p300 and CBP to Rubinstein-Taybi syndrome etiology. Neurobiol Dis. 37, 186–194 (2010).Martínez-Martínez, M. A., Pacheco-Torres, J., Borrell, V. & Canals, S. Phenotyping the central nervous system of the embryonic mouse by magnetic resonance microscopy. Neuroimage. 97, 95–106 (2014).Heikkinen, T. et al. Characterization of neurophysiological and behavioral changes, MRI brain volumetry and 1H MRS in zQ175 knock-in mouse model of Huntington’s disease. PLoS One. 7, e50717 (2012), 10.1371/journal.pone.0050717.Alarcón, J. M. et al. Chromatin acetylation, memory and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron. 42, 947–959 (2004).Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 Supp 1, S208–19 (2004).Smith, S. M. Fast robust automated brain extraction. Hum Brain Mapp 17, 143–155 (2002).Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26, 839–851 (2005).Sawiak, S. J., Wood, N. I., Williams, G. B., Morton, A. J. & Carpenter, T. A. Voxel-based morphometry in the R6/2 transgenic mouse reveals differences between genotypes not seen with manual 2D morphometry. Neurobiol Dis 33, 20–27 (2009).Kovačević, N. et al. A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cereb Cortex 15, 639–645 (2005).Zacharoff, L. et al. Cortical metabolites as biomarkers in the R6/2 model of Huntington’s disease. J Cereb Blood Flow Metab. 32, 502–514 (2012).Petryk, A., Graf, D. & Marcucio, R. Holoprosencephaly: signaling interactions between the brain and the face, the environment and the genes and the phenotypic variability in animal models and humans. Wiley Interdiscip Rev Dev Biol. 4, 17–32 (2015).Solomon, B. D., Gropman, A. & Muenke, M. Holoprosencephaly Overview. In: GeneReviews (eds Pagon, R. A. et al.), Seattle (WA): University of Washington, Seattle; 1993-2014, 2000 Dec 27 [Updated 2013 Aug 29]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1530/ [Date of access: September 4, 2015].Mazzone, D., Milana, A., Praticò, G. & Reitano, G. Rubinstein-Taybi syndrome associated with Dandy-Walker cyst. Case report in a newborn. J Perinat Med. 17, 381–384 (1989).Barson, A. J. Proceedings: Rubinstein-Taybi syndrome. Arch Dis Child. 49, 495 (1974).Tsui, D. et al. CBP regulates the differentiation of interneurons from ventral forebrain neural precursors during murine development. Dev Biol. 385, 230–241 (2014).Ross, M. E. & Walsh, C. A. Human brain malformations and their lessons for neuronal migration. Annu Rev Neurosci. 24, 1041–1070 (2001).Tanaka, T., Ling, B. C., Rubinstein, J. H. & Crone, K. R. Rubinstein-Taybi syndrome in children with tethered spinal cord. J Neurosurg. 105, 261–264 (2006).Dubourg, C. et al. Holoprosencephaly. Orphanet J Rare Dis. 2, 2–8 (2007)

    Keloids in Rubinstein-Taybi syndrome: a clinical study

    No full text
    Rubinstein-Taybi syndrome (RSTS) is a multiple congenital anomalies-intellectual disability syndrome. One of the complications is keloid formation. Keloids are proliferative fibrous growths resulting from excessive tissue response to skin trauma. To describe the clinical characteristics of keloids in individuals with RSTS reported in the literature and in a cohort of personally evaluated individuals with RSTS. We performed a literature search for descriptions of RSTS individuals with keloids. All known individuals with RSTS in the Netherlands filled out three dedicated questionnaires. All individuals with (possible) keloids were personally evaluated. A further series of individuals with RSTS from the U.K. was personally evaluated. Reliable data were available for 62 of the 83 Dutch individuals with RSTS and showed 15 individuals with RSTS (24%) to have keloids. The 15 Dutch and 12 U.K. individuals with RSTS with keloids demonstrated that most patients have multiple keloids (n > 1: 82%; n > 5: 30%). Mean age of onset is 11·9 years. The majority of keloids are located on the shoulders and chest. The mean length × width of the largest keloid was 7·1 × 2·8 cm, and the mean thickness was 0·7 cm. All affected individuals complained of itching. Generally, treatment results were disappointing. Keloids occur in 24% of individuals with RSTS, either spontaneously or after a minor trauma, usually starting in early puberty. Management schedules have disappointing results. RSTS is a Mendelian disorder with a known molecular basis, and offers excellent opportunities to study the pathogenesis of keloids in general and to search for possible treatment
    corecore