1,679 research outputs found
Effects of local hypothermia-rewarming on physiology, metabolism and inflammation of acutely injured human spinal cord.
In five patients with acute, severe thoracic traumatic spinal cord injuries (TSCIs), American spinal injuries association Impairment Scale (AIS) grades A-C, we induced cord hypothermia (33 °C) then rewarming (37 °C). A pressure probe and a microdialysis catheter were placed intradurally at the injury site to monitor intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), tissue metabolism and inflammation. Cord hypothermia-rewarming, applied to awake patients, did not cause discomfort or neurological deterioration. Cooling did not affect cord physiology (ISP, SCPP), but markedly altered cord metabolism (increased glucose, lactate, lactate/pyruvate ratio (LPR), glutamate; decreased glycerol) and markedly reduced cord inflammation (reduced IL1β, IL8, MCP, MIP1α, MIP1β). Compared with pre-cooling baseline, rewarming was associated with significantly worse cord physiology (increased ICP, decreased SCPP), cord metabolism (increased lactate, LPR; decreased glucose, glycerol) and cord inflammation (increased IL1β, IL8, IL4, IL10, MCP, MIP1α). The study was terminated because three patients developed delayed wound infections. At 18-months, two patients improved and three stayed the same. We conclude that, after TSCI, hypothermia is potentially beneficial by reducing cord inflammation, though after rewarming these benefits are lost due to increases in cord swelling, ischemia and inflammation. We thus urge caution when using hypothermia-rewarming therapeutically in TSCI
Endothelial LRP1 transports amyloid-β1-42 across the blood-brain barrier
According to the neurovascular hypothesis, impairment of low-density lipoprotein receptor-related protein-1 (LRP1) in brain capillaries of the blood-brain barrier (BBB) contributes to neurotoxic amyloid-beta (A beta) brain accumulation and drives Alzheimer's disease (AD) pathology. However, due to conflicting reports on the involvement of LRP1 in A beta transport and the expression of LRP1 in brain endothelium, the role of LRP1 at the BBB is uncertain. As global Lrp1 deletion in mice is lethal, appropriate models to study the function of LRP1 are lacking. Moreover, the relevance of systemic A beta clearance to AD pathology remains unclear, as no BBB-specific knockout models have been available. Here, we developed transgenic mouse strains that allow for tamoxifen-inducible deletion of Lrp1 specifically within brain endothelial cells (Slo1c1-CreER(Tz) Lrp1(fl/fl) mice) and used these mice to accurately evaluate LRP1-mediated A beta BBB clearance in vivo. Selective deletion of Lrp1 in the brain endothelium of C57BL/6 mice strongly reduced brain efflux of injected [I-125] A beta(1-42). Additionally, in the 5xFAD mouse model of AD, brain endothelial-specific Lrp1 deletion reduced plasma A beta levels and elevated soluble brain A beta, leading to aggravated spatial learning and memory deficits, thus emphasizing the importance of systemic AD elimination via the BBB. Together, our results suggest that receptor-mediated A beta BBB clearance may be a potential target for treatment and prevention of A beta brain accumulation in AD
Recommended from our members
Seasonal cycle of precipitation variability in South America on intraseasonal timescales
The seasonal cycle of the intraseasonal (IS) variability of precipitation in South America is described through the analysis of bandpass filtered outgoing longwave radiation (OLR) anomalies. The analysis is discriminated between short (10--30 days) and long (30--90 days) intraseasonal timescales. The seasonal cycle of the 30--90-day IS variability can be well described by the activity of first leading pattern (EOF1) computed separately for the wet season (October--April) and the dry season (May--September). In agreement with previous works, the EOF1 spatial distribution during the wet season is that of a dipole with centers of actions in the South Atlantic Convergence Zone (SACZ) and southeastern South America (SESA), while during the dry season, only the last center is discernible. In both seasons, the pattern is highly influenced by the activity of the Madden--Julian Oscillation (MJO). Moreover, EOF1 is related with a tropical zonal-wavenumber-1 structure superposed with coherent wave trains extended along the South Pacific during the wet season, while during the dry season the wavenumber-1 structure is not observed. The 10--30-day IS variability of OLR in South America can be well represented by the activity of the EOF1 computed through considering all seasons together, a dipole but with the stronger center located over SESA. While the convection activity at the tropical band does not seem to influence its activity, there are evidences that the atmospheric variability at subtropical-extratropical regions might have a role. Subpolar wavetrains are observed in the Pacific throughout the year and less intense during DJF, while a path of wave energy dispersion along a subtropical wavetrain also characterizes the other seasons. Further work is needed to identify the sources of the 10--30-day-IS variability in South America
Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis.
Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology
Biosilicate (R)-gelatine bone scaffolds by the foam replica technique: development and characterization
The development of bioactive glass-ceramic materials has been a topic of great interest aiming at enhancing the mechanical strength of traditional bioactive scaffolds. In the present study, we test and demonstrate the use of Biosilicate® glass-ceramic powder to fabricate bone scaffolds by the foam replica method. Scaffolds possessing the main requirements for use in bone tissue engineering (95% porosity, 200–500 μm pore size) were successfully produced. Gelatine coating was investigated as a simple approach to increase the mechanical competence of the scaffolds. The gelatine coating did not affect the interconnectivity of the pores and did not significantly affect the bioactivity of the Biosilicate® scaffold. The gelatine coating significantly improved the compressive strength (i.e. 0.80 ± 0.05 MPa of coated versus 0.06 ± 0.01 MPa of uncoated scaffolds) of the Biosilicate® scaffold. The combination of Biosilicate® glass-ceramic and gelatine is attractive for producing novel scaffolds for bone tissue engineering
A deep learning approach for intelligent cockpits: learning drivers routines
Nowadays an increasing number of vehicles are being equipped with powerful cockpit systems capable of collecting drivers’ footprints over time. The collection of this valuable data opens effective opportunities for routine prediction. With the growing ability of vehicles to collect spatial and temporal information solving the routine prediction problem becomes crucial and feasible. It is then extremely important to advance and take advantage of the capabilities of these cockpit systems. A vehicle that is capable of predicting the next destination of the driver and when the driver intends to leave to that destination can prepare the journey in advance. Previous studies tackling the next location prediction problem have made use of Traditional Markov models, Neural Networks, Dynamic models, among others. In this work, a framework based on the hierarchical density-based clustering algorithm followed by a Long Short-Term Memory (LSTM) recurrent neural network is proposed for spatial-temporal prediction of drivers’ routines. Based on real-life driving scenarios of three different users, the proposed approach achieved a test set accuracy of 96.20%, 90.23%, and 86.40% when predicting the next destination and a R2 Score of 93.69, 79.21, and 28.81 when predicting the departure time, respectively. The results indicate that the proposed architecture can be implemented on the vehicle cockpit for the assistance of the management of future trips.Programme (COMPETE 2020) and national funds, through the ADI Project Bosch & UMinho “Easy Ride: Experience is everything” , ref POCI-01-0247 FEDER-039334FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020 and UIDB/00013/2020
Sequencing and Analysis of the Mediterranean Amphioxus (Branchiostoma lanceolatum) Transcriptome
BACKGROUND: The basally divergent phylogenetic position of amphioxus (Cephalochordata), as well as its conserved morphology, development and genetics, make it the best proxy for the chordate ancestor. Particularly, studies using the amphioxus model help our understanding of vertebrate evolution and development. Thus, interest for the amphioxus model led to the characterization of both the transcriptome and complete genome sequence of the American species, Branchiostoma floridae. However, recent technical improvements allowing induction of spawning in the laboratory during the breeding season on a daily basis with the Mediterranean species Branchiostoma lanceolatum have encouraged European Evo-Devo researchers to adopt this species as a model even though no genomic or transcriptomic data have been available. To fill this need we used the pyrosequencing method to characterize the B. lanceolatum transcriptome and then compared our results with the published transcriptome of B. floridae. RESULTS: Starting with total RNA from nine different developmental stages of B. lanceolatum, a normalized cDNA library was constructed and sequenced on Roche GS FLX (Titanium mode). Around 1.4 million of reads were produced and assembled into 70,530 contigs (average length of 490 bp). Overall 37% of the assembled sequences were annotated by BlastX and their Gene Ontology terms were determined. These results were then compared to genomic and transcriptomic data of B. floridae to assess similarities and specificities of each species. CONCLUSION: We obtained a high-quality amphioxus (B. lanceolatum) reference transcriptome using a high throughput sequencing approach. We found that 83% of the predicted genes in the B. floridae complete genome sequence are also found in the B. lanceolatum transcriptome, while only 41% were found in the B. floridae transcriptome obtained with traditional Sanger based sequencing. Therefore, given the high degree of sequence conservation between different amphioxus species, this set of ESTs may now be used as the reference transcriptome for the Branchiostoma genus
Upper atmospheres and ionospheres of planets and satellites
The upper atmospheres of the planets and their satellites are more directly
exposed to sunlight and solar wind particles than the surface or the deeper
atmospheric layers. At the altitudes where the associated energy is deposited,
the atmospheres may become ionized and are referred to as ionospheres. The
details of the photon and particle interactions with the upper atmosphere
depend strongly on whether the object has anintrinsic magnetic field that may
channel the precipitating particles into the atmosphere or drive the
atmospheric gas out to space. Important implications of these interactions
include atmospheric loss over diverse timescales, photochemistry and the
formation of aerosols, which affect the evolution, composition and remote
sensing of the planets (satellites). The upper atmosphere connects the planet
(satellite) bulk composition to the near-planet (-satellite) environment.
Understanding the relevant physics and chemistry provides insight to the past
and future conditions of these objects, which is critical for understanding
their evolution. This chapter introduces the basic concepts of upper
atmospheres and ionospheres in our solar system, and discusses aspects of their
neutral and ion composition, wind dynamics and energy budget. This knowledge is
key to putting in context the observations of upper atmospheres and haze on
exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie
The efficacy of high-throughput sequencing and target enrichment on charred archaeobotanical remains
The majority of archaeological plant material is preserved in a charred state. Obtaining reliable ancient DNA data from these remains has presented challenges due to high rates of nucleotide damage, short DNA fragment lengths, low endogenous DNA content and the potential for modern contamination. It has been suggested that high-throughput sequencing (HTS) technologies coupled with DNA enrichment techniques may overcome some of these limitations. Here we report the findings of HTS and target enrichment on four important archaeological crops (barley, grape, maize and rice) performed in three different laboratories, presenting the largest HTS assessment of charred archaeobotanical specimens to date. Rigorous analysis of our data-excluding false-positives due to background contamination or incorrect index assignments-indicated a lack of endogenous DNA in nearly all samples, except for one lightly-charred maize cob. Even with target enrichment, this sample failed to yield adequate data required to address fundamental questions in archaeology and biology. We further reanalysed part of an existing dataset on charred plant material, and found all purported endogenous DNA sequences were likely to be spurious. We suggest these technologies are not suitable for use with charred archaeobotanicals and urge great caution when interpreting data obtained by HTS of these remains
- …