138 research outputs found

    Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry

    Get PDF
    The potential of solid phase extraction (SPE) clean-up has been assessed to reduce matrix effects (signal suppression or enhancement) in the liquid chromatography-tandem mass spectrometry (LC¿MS/MS) analysis of lipophilic marine toxins. A large array of ion-exchange, silica-based, and mixed-function SPE sorbents was tested. Polymeric sorbents were found to retain most of the toxins. Optimization experiments were carried out to maximize recoveries and the effectiveness of the clean-up. In LC¿MS/MS analysis, the observed matrix effects can depend on the chromatographic conditions used, therefore, two different HPLC methods were tested, using either an acidic or an alkaline mobile phase. The recovery of the optimized SPE protocol was around 90% for all toxins studied and no break-through was observed. The matrix effects were determined by comparing signal response from toxins spiked in crude and SPE-cleaned extracts with those derived from toxins prepared in methanol. In crude extracts, all toxins suffered from matrix effects, although in varying amounts. The most serious effects were observed for okadaic acid (OA) and pectenotoxin-2 (PTX2) in the positive electrospray ionization mode (ESI+). SPE clean-up on polymeric sorbents in combination with the alkaline LC method resulted in a substantial reduction of matrix effects to less than 15% (apparent recovery between 85 and 115%) for OA, yessotoxin (YTX) in ESI¿ and azaspiracid-1 (AZA1), PTX2, 13-desmethyl spirolides C (SPX1), and gymnodimine (GYM) in ESI+. In combination with the acidic LC method, the matrix effects after SPE were also reduced but nevertheless approximately 30% of the matrix effects remained for PTX2, SPX1, and GYM in ESI+. It was concluded that SPE of methanolic shellfish extracts can be very useful for reduction of matrix effects. However, the type of LC and MS methods used is also of great importance. SPE on polymeric sorbents in combination with LC under alkaline conditions was found the most effective method

    Phosphate Energy Metabolism During Domoic Acid-Induced Seizures

    Full text link
    The effect of domoic acid-induced seizure activity on energy metabolism and on brain pH in mice was studied by continuous EEC recording and in vivo 31 P nuclear magnetic resonance (NMR) spectroscopy. Mice were divided into ventilated (n = 6) and nonventilated (n = 7) groups. Baseline EEG was 0.1-mV amplitude with frequence of >30-Hz and of 4–5 Hz. After intraperitoneal (i.p.) administration of domoic acid (6 mg/kg), electro graphic spikes appeared at increasing frequency, pro gressing to high-amplitude (0.1-0.8 mV) continuous sei zure activity (status epilepticus). In ventilated mice, the [ 31 P]NMR spectra showed that high-energy phosphate levels and tissue pH did not change after domoic acid administration or during the intervals of spiking or status epilepticus. Nonventilated mice showed periods of EEG suppression accompanied by decreases in the levels of high-energy phosphate metabolites and in pH, corresponding to episodic respiratory suppression during the spiking interval. In all animals, status epilepticus was fol lowed by a marked decrease in EEG amplitude that pro gressed rapidly to isoelectric silence. [ 31 P]NMR spectra obtained after this were indicative of total energy failure and tissue acidosis. In a separate group of ventilated mice (n = 4), domoic acid-induced status epilepticus was ac companied initially by an increase in mean arterial blood pressure (MAP) that slowly returned to baseline level. Isoelectric silence was accompanied by a decrease in MAP to 75 ± 8 mm Hg. These experiments suggest that domoic acid-induced seizures are not accompanied by an increase in substrate demand that exceeds supply.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65953/1/j.1528-1157.1993.tb02124.x.pd

    Regulation of RasGRP1 Function in T Cell Development and Activation by Its Unique Tail Domain

    Get PDF
    The Ras-guanyl nucleotide exchange factor RasGRP1 plays a critical role in T cell receptor-mediated Erk activation. Previous studies have emphasized the importance of RasGRP1 in the positive selection of thymocytes, activation of T cells, and control of autoimmunity. RasGRP1 consists of a number of well-characterized domains, which it shares with its other family members; however, RasGRP1 also contains an ∼200 residue-long tail domain, the function of which is unknown. To elucidate the physiological role of this domain, we generated knock-in mice expressing RasGRP1 without the tail domain. Further analysis of these knock-in mice showed that thymocytes lacking the tail domain of RasGRP1 underwent aberrant thymic selection and, following TCR stimulation, were unable to activate Erk. Furthermore, the deletion of the tail domain led to enhanced CD4+ T cell expansion in aged mice, as well as the production of autoantibodies. Mechanistically, the tail-deleted form of RasGRP1 was not able to traffic to the cell membrane following stimulation, indicating a potential reason for its inability to activate Erk. While the DAG-binding C1 domain of RasGRP1 has long been recognized as an important factor mediating Erk activation, we have revealed the physiological relevance of the tail domain in RasGRP1 function and control of Erk signaling

    Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration

    Get PDF
    The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types

    Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET

    Get PDF
    Direct visualization and light control of several cellular processes is a challenge, owing to the spectral overlap of available genetically encoded probes. Here we report the most red-shifted monomeric near-infrared (NIR) fluorescent protein, miRFP720, and the fully NIR Forster resonance energy transfer (FRET) pair miRFP670-miRFP720, which together enabled design of biosensors compatible with CFP-YFP imaging and blue-green optogenetic tools. We developed a NIR biosensor for Rac1 GTPase and demonstrated its use in multiplexed imaging and light control of Rho GTPase signaling pathways. Specifically, we combined the Rac1 biosensor with CFP-YFP FRET biosensors for RhoA and for Rac1-GDI binding, and concurrently used the LOV-TRAP tool for upstream Rac1 activation. We directly observed and quantified antagonism between RhoA and Rac1 dependent on the RhoA-downstream effector ROCK; showed that Rac1 activity and GDI binding closely depend on the spatiotemporal coordination between these two molecules; and simultaneously observed Rac1 activity during optogenetic manipulation of Rac1.Peer reviewe

    Magnetic Slow Relaxation in a Metal–Organic Framework Made of Chains of Ferromagnetically Coupled Single-Molecule Magnets

    Get PDF
    International audienceWe report the study of a Dy-based metal-organic framework (MOF) with unprecedented magnetic properties. The compound is made of nine-coordinated Dy-III magnetic building blocks (MBBs) with poor intrinsic single-molecule magnet behavior. However, the MOF architecture constrains the MBBs in a one-dimensional structure that induces a ferromagnetic coupling between them. Overall, the material shows a magnetic slow relaxation in absence of external static field and a hysteretic behavior at 0.5K. Low-temperature magnetic studies, diamagnetic doping, and ab initio calculations highlight the crucial role played by the Dy-Dy ferromagnetic interaction. Overall, we report an original magnetic object at the frontier between single-chain magnets and single-molecule magnets that host intrachain couplings that cancel quantum tunneling between the MBBs. This compound is evidence that a bottom-up approach through MOF design can induce spontaneous organization of MBBs able to produce remarkable molecular magnetic materials

    Microplastic-Associated Biofilms: A Comparison of Freshwater and Marine Environments

    Get PDF
    Microplastics (<5 mm particles) occur within both engineered and natural freshwater ecosystems, including wastewater treatment plants, lakes, rivers, and estuaries. While a significant proportion of microplastic pollution is likely sequestered within freshwater environments, these habitats also constitute an important conduit of microscopic polymer particles to oceans worldwide. The quantity of aquatic microplastic waste is predicted to dramatically increase over the next decade, but the fate and biological implications of this pollution are still poorly understood. A growing body of research has aimed to characterize the formation, composition, and spatiotemporal distribution of microplastic-associated (“plastisphere”) microbial biofilms. Plastisphere microorganisms have been suggested to play significant roles in pathogen transfer, modulation of particle buoyancy, and biodegradation of plastic polymers and co-contaminants, yet investigation of these topics within freshwater environments is at a very early stage. Here, what is known about marine plastisphere assemblages is systematically compared with up-to-date findings from freshwater habitats. Through analysis of key differences and likely commonalities between environments, we discuss how an integrated view of these fields of research will enhance our knowledge of the complex behavior and ecological impacts of microplastic pollutants
    corecore