171 research outputs found

    Thermodynamic potential of the Periodic Anderson Model with the X-boson method: Chain Approximation

    Full text link
    The Periodic Anderson Model (PAM) in the UU\to\infty limit has been studied in a previous work employing the cumulant expansion with the hybridization as perturbation (M. S. Figueira, M. E. Foglio and G. G. Martinez, Phys. Rev. B \textbf{50}, 17933 (1994)). When the total number of electrons NtN_{t} is calculated as a function of the chemical potential μ\mu in the ``Chain Approximation'' (CHA), there are three values of the chemical potential μ\mu for each NtN_{t} in a small interval of NtN_{t} at low TT (M. S Figueira, M. E Foglio, Physica A 208 (1994)). We have recently introduced the ``X-boson'' method, inspired in the slave boson technique of Coleman, that solves the problem of non conservation of probability (completeness) in the CHA as well as removing the spurious phase transitions that appear with the slave boson method in the mean field approximation. In the present paper we show that the X-boson method solves also the problem of the multiple roots of Nt(μ)N_{t}(\mu) that appear in the CHA.Comment: 13 pages, 6 figures e-mails: [email protected], [email protected], [email protected]

    X-boson cumulant approach to the periodic Anderson model

    Full text link
    The Periodic Anderson Model (PAM) can be studied in the infinite U limit by employing the Hubbard X operators to project out the unwanted states. We have already studied this problem employing the cumulant expansion with the hybridization as perturbation, but the probability conservation of the local states (completeness) is not usually satisfied when partial expansions like the Chain Approximation (CHA) are employed. Here we treat the problem by a technique inspired in the mean field approximation of Coleman's slave-bosons method, and we obtain a description that avoids the unwanted phase transition that appears in the mean-field slave-boson method both when the chemical potential is greater than the localized level Ef at low temperatures (T) and for all parameters at intermediate T.Comment: Submited to Physical Review B 14 pages, 17 eps figures inserted in the tex

    Drug delivery in a tumour cord model: a computational simulation

    Get PDF
    YesThe tumour vasculature and microenvironment is complex and heterogeneous, contributing to reduced delivery of cancer drugs to the tumour. We have developed an in silico model of drug transport in a tumour cord to explore the effect of different drug regimes over a 72 h period and how changes in pharmacokinetic parameters affect tumour exposure to the cytotoxic drug doxorubicin. We used the model to describe the radial and axial distribution of drug in the tumour cord as a function of changes in the transport rate across the cell membrane, blood vessel and intercellular permeability, flow rate, and the binding and unbinding ratio of drug within the cancer cells. We explored how changes in these parameters may affect cellular exposure to drug. The model demonstrates the extent to which distance from the supplying vessel influences drug levels and the effect of dosing schedule in relation to saturation of drug-binding sites. It also shows the likely impact on drug distribution of the aberrant vasculature seen within tumours. The model can be adapted for other drugs and extended to include other parameters. The analysis confirms that computational models can play a role in understanding novel cancer therapies to optimize drug administration and delivery

    Fano resonance in electronic transport through a quantum wire with a side-coupled quantum dot: X-boson treatment

    Full text link
    The transport through a quantum wire with a side coupled quantum dot is studied. We use the X-boson treatment for the Anderson single impurity model in the limit of U=U=\infty . The conductance presents a minimum for values of T=0 in the crossover from mixed-valence to Kondo regime due to a destructive interference between the ballistic channel associated with the quantum wire and the quantum dot channel. We obtain the experimentally studied Fano behavior of the resonance. The conductance as a function of temperature exhibits a logarithmic and universal behavior, that agrees with recent experimental results.Comment: 6 pages, 10 eps figs., revtex

    Charge dynamics in the Mott insulating phase of the ionic Hubbard model

    Full text link
    We extend to charge and bond operators the transformation that maps the ionic Hubbard model at half filling onto an effective spin Hamiltonian. Using these operators we calculate the amplitude of the charge density wave in different dimensions. In one dimension, the charge-charge correlations at large distance d decay as 1/(d^3 ln^{3/2}d), in spite of the presence of a charge gap, as a consequence of remaining charge-spin coupling. Bond-bond correlations decay as (-1)^d 1/(d ln^{3/2}d) as in the usual Hubbard model.Comment: 4 pages, no figures, submitted to Phys. Rev. B printing errors corrected and some clarifications adde

    Three-points interfacial quadrature for geometrical source terms on nonuniform grids

    Get PDF
    International audienceThis paper deals with numerical (finite volume) approximations, on nonuniform meshes, for ordinary differential equations with parameter-dependent fields. Appropriate discretizations are constructed over the space of parameters, in order to guarantee the consistency in presence of variable cells' size, for which LpL^p-error estimates, 1p<+1\le p < +\infty, are proven. Besides, a suitable notion of (weak) regularity for nonuniform meshes is introduced in the most general case, to compensate possibly reduced consistency conditions, and the optimality of the convergence rates with respect to the regularity assumptions on the problem's data is precisely discussed. This analysis attempts to provide a basic theoretical framework for the numerical simulation on unstructured grids (also generated by adaptive algorithms) of a wide class of mathematical models for real systems (geophysical flows, biological and chemical processes, population dynamics)
    corecore