144 research outputs found

    Spin-phonon coupled modes in the incommensurate phases of doped CuGeO3_{3}

    Full text link
    The doping effect of the folded phonon mode at 98 cm−1^{-1} was investigated on the Si-doped CuGeO3_3 by magneto-optical measurements in far-infrared (FIR) region under high magnetic field. The folded phonon mode at 98 cm−1^{-1} appears not only in the dimerized (D) phase but also in the dimerized-anitiferromagnetic (DAF) phase on the doped CuGeO3_3. The splitting was observed in the incommensurate (IC) phase and the antiferromagnetically ordered incommensurate (IAF) phase above HCH_C. The split-off branches exhibit different field dependence from that of the pure CuGeO3_3 in the vicinity of HCH_C, and the discrepancy in the IAF phase is larger than that in the IC phase. It is caused by the interaction between the solitons and the impurities.Comment: 7 pages, 4 figures, resubmitted to Phys. Rev.

    Spin-Peierls and Antiferromagnetic Phases in Cu{1-x}Zn{x}GeO{3}: A Neutron Scattering Study

    Full text link
    Comprehensive neutron scattering studies were carried out on a series of high-quality single crystals of Cu_{1-x}Zn_xGeO_3. The Zn concentration, x, was determined for each sample using Electron Probe Micro-Analysis. The measured Zn concentrations were found to be 40-80% lower than the nominal values. Nevertheless the measured concentrations cover a wide range which enables a systematic study of the effects due to Zn-doping. We have confirmed the coexistence of spin-Peierls (SP) and antiferromagnetic (AF) orderings at low temperatures and the measured phase diagram is presented. Most surprisingly, long-range AF ordering occurs even in the lowest available Zn concentration, x=0.42%, which places important constraints on theoretical models of the AF-SP coexistence. Magnetic excitations are also examined in detail. The AF excitations are sharp at low energies and show no considerable broadening as x increases indicating that the AF ordering remains long ranged for x up to 4.7%. On the other hand, the SP phase exhibits increasing disorder as x increases, as shown from the broadening of the SP excitations as well as the dimer reflection peaks.Comment: 17 preprint style pages, 9 postscript files included. Submitted to Phys. Rev. B. Also available from http://insti.physics.sunysb.edu/~mmartin/pubs.htm

    The microscopic spin-phonon coupling constants in CuGeO_3

    Full text link
    Using RPA results, mean field theory, and refined data for the polarization vectors we determine the coupling constants of the four Peierls-active phonon modes to the spin chains of CuGeO_3. We then derive the values of the coupling of the spin system to the linear ionic displacements, the bond lengths and the angles between bonds. Our values are consistent with microscopic theories and various experimental results. We discuss the applicability of static approaches to the spin-phonon coupling. The c-axis anomaly of the thermal expansion is explained. We give the values of the coupling constants in an effective one-dimensional Hamiltonian.Comment: 11 pages, two figures, 13 tables, PRB 59 (in press

    Spin-Peierls transition in NaV2O5 in high magnetic fields

    Get PDF
    We investigate the magnetic field dependence of the spin-Peierls transition in NaV2_2O5_5 in the field range 16T-30T. The transition temperature exhibits a very weak variation with the field, suggesting a novel mechanism for the formation of the spin-Peierls state. We argue that a charge ordering transition accompanied by singlet formation is consistent with our observations.Comment: 4 pages, 3 figures, final version to appear in Phys. Rev. B (RC

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
    • 

    corecore