1,975 research outputs found

    A modal theorem-preserving translation of a class of three-valued logics of incomplete information

    Get PDF
    International audienceThere are several three-valued logical systems that form a scattered landscape, even if all reasonable connectives in three-valued logics can be derived from a few of them. Most papers on this subject neglect the issue of the relevance of such logics in relation with the intended meaning of the third truth-value. Here, we focus on the case where the third truth-value means unknown, as suggested by Kleene. Under such an understanding, we show that any truth-qualified formula in a large range of three-valued logics can be translated into KD as a modal formula of depth 1, with modalities in front of literals only, while preserving all tautologies and inference rules of the original three-valued logic. This simple information logic is a two-tiered classical propositional logic with simple semantics in terms of epistemic states understood as subsets of classical interpretations. We study in particular the translations of Kleene, Gödel, ᮌukasiewicz and Nelson logics. We show that Priest’s logic of paradox, closely connected to Kleene’s, can also be translated into our modal setting, simply by exchanging the modalities possible and necessary. Our work enables the precise expressive power of three-valued logics to be laid bare for the purpose of uncertainty management

    The role of alexithymia and empathy on radiation therapists’ professional quality of life

    Get PDF
    Background and purpose: Physical and mental well-being are crucial for oncology professionals as they affect performance at work. Personality traits, as alexithymia and empathy, may influence professional quality of life. Alexithymia involves diminished skills in emotion processing and awareness. Empathy is pertinent to the ability to understand another's ‘state of mind/emotion’. The PROject on Burn-Out in RadiatioN Oncology (PRO BONO) investigates professional quality of life amongst radiation oncology professionals, exploring the role of alexithymia and empathy. The present study reports on data pertinent to radiation therapists (RTTs). Material and methods: An online survey targeted ESTRO members. Participants were asked to fill out 3 questionnaires for alexithymia, empathy and professional quality of life: (a) Toronto Alexithymia Scale (TAS-20); (b) Interpersonal Reactivity Index (IRI); (c) Professional Quality of Life Scale (ProQoL). The present analysis focuses on RTTS to evaluate compassion satisfaction (CS), secondary traumatic stress (STS) and Burnout and their correlation with alexithymia and empathy, using generalized linear modeling. Covariates found significant at univariate linear regression analysis were included in the multivariate linear regression model. Results: A total of 399 RTTs completed all questionnaires. The final model for the burnout scale of ProQoL found, as significal predictors, the TAS-20 total score (ÎČ = 0.46, p < 0 0.001), and the individual's perception of being valued by supervisor (ÎČ = −0.29, p < 0.001). With respect to CS, the final model included TAS-20 total score (ÎČ = −0.33, p < 0.001), the Empatic Concern domain (ÎČ = 0.23, p < 0.001) of the IRI questionnaire and the individual's perception of being valued by colleagues (ÎČ = 0.22, p < 0.001). Conclusions: Alexithymia increased the likelyhood to experience burnout and negatively affected the professional quality of life amongst RTTs working in oncology. Empathy resulted in higher professional fulfillment together with collegaues’ appreciation. These results may be used to benchmark preventing strategies and implement organization-direct and/or individual-directed interventions

    Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using Deep Learning

    Full text link
    Diagnosis based on histopathology for skin cancer detection is today's gold standard and relies on the presence or absence of biomarkers and cellular atypia. However it suffers drawbacks: it requires a strong expertise and is time-consuming. Moreover the notion of atypia or dysplasia of the visible cells used for diagnosis is very subjective, with poor inter-rater agreement reported in the literature. Lastly, histology requires a biopsy which is an invasive procedure and only captures a small sample of the lesion, which is insufficient in the context of large fields of cancerization. Here we demonstrate that the notion of cellular atypia can be objectively defined and quantified with a non-invasive in-vivo approach in three dimensions (3D). A Deep Learning (DL) algorithm is trained to segment keratinocyte (KC) nuclei from Line-field Confocal Optical Coherence Tomography (LC-OCT) 3D images. Based on these segmentations, a series of quantitative, reproducible and biologically relevant metrics is derived to describe KC nuclei individually. We show that, using those metrics, simple and more complex definitions of atypia can be derived to discriminate between healthy and pathological skins, achieving Area Under the ROC Curve (AUC) scores superior than 0.965, largely outperforming medical experts on the same task with an AUC of 0.766. All together, our approach and findings open the door to a precise quantitative monitoring of skin lesions and treatments, offering a promising non-invasive tool for clinical studies to demonstrate the effects of a treatment and for clinicians to assess the severity of a lesion and follow the evolution of pre-cancerous lesions over time.© 2022. The Author(s)

    Measurement of the Branching Fraction for B- --> D0 K*-

    Get PDF
    We present a measurement of the branching fraction for the decay B- --> D0 K*- using a sample of approximately 86 million BBbar pairs collected by the BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the K*- through its decay to K0S pi-. We measure the branching fraction to be B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid Communications

    Evidence for the η_b(1S) Meson in Radiative ΄(2S) Decay

    Get PDF
    We have performed a search for the η_b(1S) meson in the radiative decay of the ΄(2S) resonance using a sample of 91.6 × 10^6 ΄(2S) events recorded with the BABAR detector at the PEP-II B factory at the SLAC National Accelerator Laboratory. We observe a peak in the photon energy spectrum at E_Îł = 609.3^(+4.6)_(-4.5)(stat)±1.9(syst) MeV, corresponding to an η_b(1S) mass of 9394.2^(+4.8)_(-4.9)(stat) ± 2.0(syst) MeV/c^2. The branching fraction for the decay ΄(2S) → γη_b(1S) is determined to be [3.9 ± 1.1(stat)^(+1.1)_(-0.9)(syst)] × 10^(-4). We find the ratio of branching fractions B[΄(2S) → γη_b(1S)]/B[΄(3S) → γη_b(1S)]= 0.82 ± 0.24(stat)^(+0.20)_(-0.19)(syst)

    Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    Get PDF
    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.Comment: 14 pages, 10 figures, 6 table
    • 

    corecore