259 research outputs found

    A continuum treatment of growth in biological tissue: The coupling of mass transport and mechanics

    Full text link
    Growth (and resorption) of biological tissue is formulated in the continuum setting. The treatment is macroscopic, rather than cellular or sub-cellular. Certain assumptions that are central to classical continuum mechanics are revisited, the theory is reformulated, and consequences for balance laws and constitutive relations are deduced. The treatment incorporates multiple species. Sources and fluxes of mass, and terms for momentum and energy transfer between species are introduced to enhance the classical balance laws. The transported species include: (\romannumeral 1) a fluid phase, and (\romannumeral 2) the precursors and byproducts of the reactions that create and break down tissue. A notable feature is that the full extent of coupling between mass transport and mechanics emerges from the thermodynamics. Contributions to fluxes from the concentration gradient, chemical potential gradient, stress gradient, body force and inertia have not emerged in a unified fashion from previous formulations of the problem. The present work demonstrates these effects via a physically-consistent treatment. The presence of multiple, interacting species requires that the formulation be consistent with mixture theory. This requirement has far-reaching consequences. A preliminary numerical example is included to demonstrate some aspects of the coupled formulation.Comment: 29 pages, 11 figures, accepted for publication in Journal of the Mechanics and Physics of Solids. See journal for final versio

    On the Moyal quantized BKP type hierarchies

    Full text link
    Quantization of BKP type equations are done through the Moyal bracket and the formalism of pseudo-differential operators. It is shown that a variant of the dressing operator can also be constructed for such quantized systems

    Biological remodelling: Stationary energy, configurational change, internal variables and dissipation

    Full text link
    Remodelling is defined as an evolution of microstructure or variations in the configuration of the underlying manifold. The manner in which a biological tissue and its subsystems remodel their structure is treated in a continuum mechanical setting. While some examples of remodelling are conveniently modelled as evolution of the reference configuration (Case I), others are more suited to an internal variable description (Case II). In this paper we explore the applicability of stationary energy states to remodelled systems. A variational treatment is introduced by assuming that stationary energy states are attained by changes in microstructure via one of the two mechanisms--Cases I and II. An example is presented to illustrate each case. The example illustrating Case II is further studied in the context of the thermodynamic dissipation inequality.Comment: 24 pages, 4 figures. Replaced version has corrections to typos in equations, and the corresponding correct plot of the solution--all in Section

    Remodeling of biological tissue: Mechanically induced reorientation of a transversely isotropic chain network

    Full text link
    A new class of micromechanically motivated chain network models for soft biological tissues is presented. On the microlevel, it is based on the statistics of long chain molecules. A wormlike chain model is applied to capture the behavior of the collagen microfibrils. On the macrolevel, the network of collagen chains is represented by a transversely isotropic eight chain unit cell introducing one characteristic material axis. Biomechanically induced remodeling is captured by allowing for a continuous reorientation of the predominant unit cell axis driven by a biomechanical stimulus. To this end, we adopt the gradual alignment of the unit cell axis with the direction of maximum principal strain. The evolution of the unit cell axis' orientation is governed by a first-order rate equation. For the temporal discretization of the remodeling rate equation, we suggest an exponential update scheme of Euler-Rodrigues type. For the spatial discretization, a finite element strategy is applied which introduces the current individual cell orientation as an internal variable on the integration point level. Selected model problems are analyzed to illustrate the basic features of the new model. Finally, the presented approach is applied to the biomechanically relevant boundary value problem of an in vitro engineered functional tendon construct.Comment: LaTeX2e, 19 pages, 9 figure

    Impact Evaluation of Training Natural Leaders during a Community-Led Total Sanitation Intervention: A Cluster-Randomized Field Trial in Ghana

    Get PDF
    We used a cluster-randomized field trial to evaluate training natural leaders (NLs) as an addition to a community-led total sanitation (CLTS) intervention in Ghana. NLs are motivated community members who influence their peers’ behaviors during CLTS. The outcomes were latrine use and quality, which were assessed from surveys and direct observation. From October 2012, Plan International Ghana (Plan) implemented CLTS in 60 villages in three regions in Ghana. After 5 months, Plan trained eight NLs from a randomly selected half of the villages, then continued implementing CLTS in all villages for 12 more months. The NL training led to increased time spent on CLTS by community members, increased latrine construction, and a 19.9 percentage point reduction in open defecation (p < 0.001). The training had the largest impact in small, remote villages with low exposure to prior water and sanitation projects, and may be most effective in socially cohesive villages. For both interventions, latrines built during CLTS were less likely to be constructed of durable materials than pre-existing latrines, but were equally clean, and more often had handwashing materials. CLTS with NL training contributes to three parts of Goal 6 of the Sustainable Development Goals: eliminating open defecation, expanding capacity-building, and strengthening community participation

    The Ursinus Weekly, November 6, 1975

    Get PDF
    Lloyd joins German Dept. • Parking problems • AAUP speaker discusses Union • Student apprehended • Psych Club news • State of the Union • Hot flicks in Philly • Gurzynski hits century mark • Bearettes tie W. C. • Widener wallops whazoo\u27s woefuls! • Phila. Sixers\u27 hoopla • Here and there • El Espanol vivahttps://digitalcommons.ursinus.edu/weekly/1045/thumbnail.jp
    • …
    corecore