262 research outputs found

    Thick GEM-like multipliers - a simple solution for large area UV-RICH detectors

    Full text link
    We report on the properties of thick GEM-like (THGEM) electron multipliers made of 0.4 mm thick double-sided Cu-clad G-10 plates, perforated with a dense hexagonal array of 0.3 mm diameter drilled holes. Photon detectors comprising THGEMs coupled to semi-transparent CsI photocathodes or reflective ones deposited on the THGEM surface were studied with Ar/CO2 (70:30), Ar/CH4 (95:5), CH4 and CF4. Gains of ~100000 or exceeding 1000000 were reached with single- or double-THGEM, respectively; the signals have 5-10 ns rise times. The electric field configurations at the THGEM electrodes result in an efficient extraction of photoelectrons and their focusing into the holes; this occurs already at rather low gains, below 100. These detectors, with single-photon sensitivity and with expected sub-millimeter localization, can operate at MHz/mm2 rates. We discuss their prospects for large-area UV-photon imaging for RICH.Comment: 5 pages, 6 figure

    Ion-induced effects in GEM & GEM/MHSP gaseous photomultipliers for the UV and the visible spectral range

    Get PDF
    We report on the progress in the study of cascaded GEM and GEM/MHSP gas avalanche photomultipliers operating at atmospheric pressure, with CsI and bialkali photocathodes. They have single-photon sensitivity, ns time resolution and good localization properties. We summarize operational aspects and results, with the highlight of a high-gain stable gated operation of a visible-light device. Of particular importance are the results of a recent ion-backflow reduction study in different cascaded multipliers, affecting the detector's stability and the photocathode's liftime. We report on the significant progress in ion-blocking and provide first results on bialkali-photocathode aging under gas multiplication.Comment: 6 pages, 8 figure

    Development of a triple GEM UV-photon detector operated in pure CF4 for the PHENIX experiment

    Full text link
    Results obtained with a triple GEM detector operated in pure CF4 with and without a reflective CsI photocathode are presented. The detector operates in a stable mode at gains up to 10^4. A deviation from exponential growth starts to develop when the total charge exceeds ~ 4 10^6 e leading to gain saturation when the total charge is ~ 2 10^7 e and making the structure relatively robust against discharges. No aging effects are observed in the GEM foils after a total accumulated charge of ~ 10 mC/cm^2 at the anode. The ion back-flow current to the reflective photocathode is comparable to the electron current to the anode. However, no significant degradation of the CsI photocathode is observed for a total ion back-flow charge of ~ 7 mC/cm^2.Comment: 14 pages, 11 figures, Submitted to NIM

    The Chain of Effects of Energy Retrofit Measures – A Contribution to the Project RentalCal

    Get PDF
    AbstractFurther improvements of the buildings stock's energy performance are a necessary precondition to achieve Europe's climate and energy policy objectives. Hereto, many investors need to overcome their insecurities regarding the profitability of such measures. As a contribution to the EU-project RentalCal, in this paper it is discussed and illustrated, what consequences result from energy performance improvements of existing buildings and how they influence cash flow and real estate value along a chain of effects. In particular, explanatory patterns and lines of arguments which complement and interpret empirical evidence are developed

    Efficiency of a mathematical model in generating CAD/CAM-partial crowns with natural tooth morphology

    Get PDF
    The "biogeneric tooth model” can be used for computer-aided design (CAD) of the occlusal surface of dental restorations. From digital 3D-data, it automatically retrieves a morphology matching the natural surface left after preparation. This study evaluates the potential of this method for generating well-matched and well-adjusted CAD/computer-aided manufacturing (CAM) fabricated partial crowns. Twelve models with partial crown preparations were mounted into an articulator. Partial crowns were designed with the Cerec 3D CAD software based on the biogeneric tooth model (Biog.CAD) and, for control, with a conventional data-based Cerec 3D CAD software (Conv.CAD). The design time was measured, and the naturalness of the morphology was visually assessed. The restorations were milled, cemented on the models, and the vertical discrepancy and the time for final occlusal adjustment were measured. The Biog.CAD software offered a significantly higher naturalness (up to 225 to 11 scores) and was significantly faster by 251 (±78) s in designing partial crowns (p < 0.01) compared to Conv.CAD software. Vertical discrepancy, 0.52 (±0.28) mm for Conv.CAD and 0.46 (±0.19) mm for Biog.CAD, and occlusal adjustment time, 118 (±132) s for Conv.CAD and 102 (±77) s for Biog.CAD, did not differ significantly. In conclusion, the biogeneric tooth model is able to generate occlusal morphology of partial crowns in a fully automated process with higher naturalness compared to conventional interactive CAD softwar

    Development of high gain GEM detectors

    Get PDF
    We describe systematic measurements carried out with single and double GEM detectors with printed circuit readout. The maximum safe operating gain has been measured at increasing radiation flux and under exposure to heavily ionizing tracks. Detection efficiency, localization accuracy and cluster size have been measured in a minimum ionizing particle beam. With a suitably configured readout electrode, fast, two-dimensional localization of radiation is demonstrated. (15 refs)

    Advances in Thick GEM-like gaseous electron multipliers. Part I: atmospheric pressure operation

    Full text link
    Thick GEM-like (THGEM) gaseous electron multipliers are made of standard printed-circuit board perforated with sub-millimeter diameter holes, etched at their rims. Effective gas multiplication factors of 100000 and 10000000 and fast pulses in the few nanosecond rise-time scale were reached in single- and cascaded double-THGEM elements, in atmospheric-pressure standard gas mixtures with single photoelectrons. High single-electron detection efficiency is obtained in photon detectors combining THGEMs and semitransparent UV-sensitive CsI photocathodes or reflective ones deposited on the top THGEM face; the latter benefits of a reduced sensitivity to ionizing background radiation. Stable operation was recorded with photoelectron fluxes exceeding MHz/mm2. The properties and some potential applications of these simple and robust multipliers are discussed.Comment: 41 pages, 27 figures. Submitted to Nucl. Instr. and Meth. A, Dec 21, 200

    CEREC® CAD-CAM keramički inlay-i. Prikaz slučaja nakon 5 godina

    Get PDF
    A t least three different techniques have been described for preparing computer-aided designed (CAD) and computer-aided manufactured (CAM) inlays and veneers. This paper details a clinical case in which 13 Cerec CAD-CAM inlays have been in function for five years. The Cerec® — System produces ceramic inlays which are designed, fabricated and placed during one appointment. Advantages and system-related limitations are discussed.Opisane su tri različite tehnike za pripremu inlaya koji su dizajnirani (CAD) i izrađeni pomoću kompjutora (CAM). Ovaj rad pokazuje klinički slučaj kod kojeg je 13 Cerec CAD-CAM inlaya u funkciji pet godina. Cerec sustav omogućuje dizajniranje, izradu i postavljanje inlaya u jednom posjetu. Raspravljene su prednosti i ograničenja sistema

    Confounding Factors Affecting the Marginal Quality of an Intra-Oral Scan

    Get PDF
    Objectives: To assess the effect of clinical factors on the quality of intra-oral scans of crown margins. These factors are; presence of adjacent teeth, proximity to gingivae, encumbrance of wand positioning within oral cavity. Methods: A typodont lower molar (Frasaco, Germany) was prepared for an all-ceramic crown with 1.5 mm supraginigival (lingual) and equigingival (buccal) margins. The tooth was scanned in a model scanner, creating a master scan. An intra-oral scanner (IOS) (Omnicam, Sirona Dental) was used to acquire sets of 5 scans each, under varying conditions; (1) the presence/absence of adjacent teeth, (2) model mounted in manikin head/hand-held, (3) with/without a 1 mm shim to elevate the margin. Every combination was investigated, yielding 40 scans (8 groups of 5). The master scan margin was identified by selecting the highest curvature region (&gt;1.8). The master was aligned to each IOS scan, and 4 regions of each IOS scan margin were extracted, lying within 100 ÎĽm of predefined mesial, distal, buccal and lingual sections of the master margin. The mean curvature of each margin section was calculated using Meshlab. The effect of each confounding factor on margin curvature was analysed using ANOVA. Results: Lingual margin curvature remained consistent regardless of scanning conditions. Buccal margin curvature was significantly affected when located equigingivally. Mesial margin curvature was significantly affected in the presence of adjacent teeth and proximity to the gingivae. Distal margin curvature was significantly affected by all three confounding factors. Conclusions: The curvature (sharpness) of the margin recorded by a commercial IOS is significantly affected by clinical factors obscuring visibility
    • …
    corecore