35 research outputs found

    Hierarchically modelling many stars to improve inference with asteroseismology

    Get PDF
    Astronomers want accurate physical properties of stars like age, mass, and radius. We can estimate these by comparing observable parameters to those from models of stellar evolution. This has been made possible on a large-scale with recent astronomical surveys and the field of asteroseismology probing inside stars. In the first chapter of this thesis, I introduce asteroseismology --- the study of stellar oscillations. I choose to focus on stars which oscillate like the Sun with masses from 0.8 to 1.2 M\mathrm{M}_{\odot} undergoing their main sequence and subgiant phases of evolution. To date, we have observed oscillations in hundreds of these stars. With the upcoming space-based PLATO mission, we anticipate observations of 104\sim 10^4 more solar-like oscillators. In this thesis, I aim to develop probabilistic modelling methods which can quickly and easily scale to such huge numbers of stars. Furthermore, we know our stellar models are wrong. It is important to accurately quantify this uncertainty if we are to use stellar parameters to understand stellar populations. In Chapters 2 and 3, I present a novel approach for improving the inference of fundamental stellar parameters using a hierarchical Bayesian model. I introduce a statistical treatment which 'pools' helium abundance (YY) and the mixing-length theory parameter (αMLT\alpha_\mathrm{MLT}) to incorporate information about their distributions in the population. Specifically, I model YY as a distribution centred on a linear enrichment law parametrised by ΔY/ΔZ\Delta Y/\Delta Z. I test our method on a sample of dwarfs and subgiants observed by Kepler with 0.8<M/M<1.20.8 < M/\mathrm{M}_{\odot} < 1.2. Exploring various levels of pooling parameters, with and without the Sun as a calibrator, I report ΔY/ΔZ=1.050.25+0.28\Delta Y/\Delta Z = 1.05^{+0.28}_{-0.25} when the Sun is included in the sample. Despite marginalising over uncertainties in YY and αMLT\alpha_\mathrm{MLT}, I am able to report statistical uncertainties of 2.5 per cent in mass, 1.2 per cent in radius, and 12 per cent in age. Moreover, my approach can be extended to larger samples. This will enable further uncertainty reduction in fundamental parameters and data-driven insight into population-level distributions. There is additional information on YY to be gained from detailed asteroseismology. Acoustic glitches, which arise from rapid changes in stellar structure (e.g. from helium ionisation), leave a periodic signature in the mode frequencies (νnl\nu_{nl}) of solar-like oscillators. I explore the theoretical background behind this effect in Chapter 4. Then, in Chapter 5, I present a new method for modelling glitch signatures in the radial mode frequencies using a Gaussian Process (GP). The GP provides a statistical treatment of uncertainty in the functional form of our model for νnl\nu_{nl}. Using a model star and 16 Cyg A, I compare this approach to another method which models the smooth component of the function using a 4th-order polynomial. My results show that the GP method accurately determines the strength and location of glitches caused by He II ionisation and the base of the convective zone. I find that using a prior to inform the glitch parameters in my method reduces the occurrence of extreme, unrealistic solutions in the posterior. Furthermore, I demonstrate that the GP approach outperforms the polynomial by marginalising over the lesser signature of He I ionisation. However, inclusion of the He I ionisation glitch in the model remains a question. Overall, my results suggest that the GP method should be further tested on more solar-like oscillators and then integrated into the hierarchical model presented in this work

    The evolution of the Milky Way's thin disc radial metallicity gradient with K2 asteroseismic ages

    Get PDF
    The radial metallicity distribution of the Milky Way's disc is an important observational constraint for models of the formation and evolution of our Galaxy. It informs our understanding of the chemical enrichment of the Galactic disc and the dynamical processes therein, particularly radial migration. We investigate how the metallicity changes with guiding radius in the thin disc using a sample of red-giant stars with robust astrometric, spectroscopic and asteroseismic parameters. Our sample contains 668668 stars with guiding radii 44 kpc < RgR_\mathrm{g} < 1111 kpc and asteroseismic ages covering the whole history of the thin disc with precision 25%\approx 25\%. We use MCMC analysis to measure the gradient and its intrinsic spread in bins of age and construct a hierarchical Bayesian model to investigate the evolution of these parameters independently of the bins. We find a smooth evolution of the gradient from 0.07\approx -0.07 dex/kpc in the youngest stars to 0.04\approx -0.04 dex/kpc in stars older than 1010 Gyr, with no break at intermediate ages. Our results are consistent with those based on asteroseismic ages from CoRoT, with that found in Cepheid variables for stars younger than 11 Gyr, and with open clusters for stars younger than 66 Gyr. For older stars we find a significantly lower metallicity in our sample than in the clusters, suggesting a survival bias favouring more metal-rich clusters. We also find that the chemical evolution model of Chiappini (2009) is too metal-poor in the early stages of disc formation. Our results provide strong new constraints for the growth and enrichment of the thin disc and radial migration, which will facilitate new tests of model conditions and physics.Comment: 15 pages, 16 figures. Accepted for publication in MNRA

    Stellar Cruise Control: Weakened Magnetic Braking Leads to Sustained Rapid Rotation of Old Stars

    Full text link
    Despite a growing sample of precisely measured stellar rotation periods and ages, the strength of magnetic braking and the degree of departure from standard (Skumanich-like) spindown have remained persistent questions, particularly for stars more evolved than the Sun. Rotation periods can be measured for stars older than the Sun by leveraging asteroseismology, enabling models to be tested against a larger sample of old field stars. Because asteroseismic measurements of rotation do not depend on starspot modulation, they avoid potential biases introduced by the need for a stellar dynamo to drive starspot production. Using a neural network trained on a grid of stellar evolution models and a hierarchical model-fitting approach, we constrain the onset of weakened magnetic braking. We find that a sample of stars with asteroseismically-measured rotation periods and ages is consistent with models that depart from standard spindown prior to reaching the evolutionary stage of the Sun. We test our approach using neural networks trained on model grids produced by separate stellar evolution codes with differing physical assumptions and find that the choices of grid physics can influence the inferred properties of the braking law. We identify the normalized critical Rossby number Rocrit/Ro=0.91±0.03{\rm Ro}_{\rm crit}/{\rm Ro}_\odot = 0.91\pm0.03 as the threshold for the departure from standard rotational evolution. This suggests that weakened magnetic braking poses challenges to gyrochronology for roughly half of the main sequence lifetime of sun-like stars.Comment: 26 pages, 10 figure

    Hierarchically modelling Kepler dwarfs and subgiants to improve inference of stellar properties with asteroseismology

    Get PDF
    This work is a part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (CartographY; grant agreement ID 804752). AJL, GRD, and WJC acknowledge the support of the Science and Technology Facilities Council. DH acknowledges support from the Alfred P. Sloan Foundation, the National Aeronautics and Space Administration (80NSSC19K0597), and the National Science Foundation (AST-1717000). MBN acknowledges support from the UK Space Agency. RAG acknowledges the funding from the PLATO CNES grant.With recent advances in modelling stars using high-precision asteroseismology, the systematic effects associated with our assumptions of stellar helium abundance (Y) and the mixing-length theory parameter (αMLT) are becoming more important. We apply a new method to improve the inference of stellar parameters for a sample of Kepler dwarfs and subgiants across a narrow mass range (⁠0.8<M<1.2M⊙). In this method, we include a statistical treatment of Y and the αMLT. We develop a hierarchical Bayesian model to encode information about the distribution of Y and αMLT in the population, fitting a linear helium enrichment law including an intrinsic spread around this relation and normal distribution in αMLT. We test various levels of pooling parameters, with and without solar data as a calibrator. When including the Sun as a star, we find the gradient for the enrichment law, ΔY/ΔZ=1.05+0.28−0.25 and the mean αMLT in the population, μα=1.90+0.10−0.09, μα=1.90+0.10−0.09⁠. While accounting for the uncertainty in Y and αMLT, we are still able to report statistical uncertainties of 2.5 per cent in mass, 1.2 per cent in radius, and 12 per cent in age. Our method can also be applied to larger samples that will lead to improved constraints on both the population level inference and the star-by-star fundamental parameters.Publisher PDFPeer reviewe

    A Novel Sperm-Delivered Toxin Causes Late-Stage Embryo Lethality and Transmission Ratio Distortion in C. elegans

    Get PDF
    The evolutionary fate of an allele ordinarily depends on its contribution to host fitness. Occasionally, however, genetic elements arise that are able to gain a transmission advantage while simultaneously imposing a fitness cost on their hosts. We previously discovered one such element in C. elegans that gains a transmission advantage through a combination of paternal-effect killing and zygotic self-rescue. Here we demonstrate that this element is composed of a sperm-delivered toxin, peel-1, and an embryo-expressed antidote, zeel-1. peel-1 and zeel-1 are located adjacent to one another in the genome and co-occur in an insertion/deletion polymorphism. peel-1 encodes a novel four-pass transmembrane protein that is expressed in sperm and delivered to the embryo via specialized, sperm-specific vesicles. In the absence of zeel-1, sperm-delivered PEEL-1 causes lethal defects in muscle and epidermal tissue at the 2-fold stage of embryogenesis. zeel-1 is expressed transiently in the embryo and encodes a novel six-pass transmembrane domain fused to a domain with sequence similarity to zyg-11, a substrate-recognition subunit of an E3 ubiquitin ligase. zeel-1 appears to have arisen recently, during an expansion of the zyg-11 family, and the transmembrane domain of zeel-1 is required and partially sufficient for antidote activity. Although PEEL-1 and ZEEL-1 normally function in embryos, these proteins can act at other stages as well. When expressed ectopically in adults, PEEL-1 kills a variety of cell types, and ectopic expression of ZEEL-1 rescues these effects. Our results demonstrate that the tight physical linkage between two novel transmembrane proteins has facilitated their co-evolution into an element capable of promoting its own transmission to the detriment of organisms carrying it

    Randomised multicentre effectiveness trial of rapid syndromic testing by panel assay in children presenting to European emergency departments with acute respiratory infections-trial protocol for the ADEQUATE Paediatric trial

    Get PDF

    Procalcitonin Is Not a Reliable Biomarker of Bacterial Coinfection in People With Coronavirus Disease 2019 Undergoing Microbiological Investigation at the Time of Hospital Admission

    Get PDF
    Abstract Admission procalcitonin measurements and microbiology results were available for 1040 hospitalized adults with coronavirus disease 2019 (from 48 902 included in the International Severe Acute Respiratory and Emerging Infections Consortium World Health Organization Clinical Characterisation Protocol UK study). Although procalcitonin was higher in bacterial coinfection, this was neither clinically significant (median [IQR], 0.33 [0.11–1.70] ng/mL vs 0.24 [0.10–0.90] ng/mL) nor diagnostically useful (area under the receiver operating characteristic curve, 0.56 [95% confidence interval, .51–.60]).</jats:p

    Implementation of corticosteroids in treating COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK:prospective observational cohort study

    Get PDF
    BACKGROUND: Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. METHODS: We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. FINDINGS: Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70–0·89], p=0·0001, for 70–79 years; 0·52 [0·46–0·58], p80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75–80% in January, 2021. INTERPRETATION: Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. FUNDING: UK National Institute for Health Research and UK Medical Research Council
    corecore