
 
 

University of Birmingham

Systematics in asteroseismic modelling
Li, Tanda; Davies, Guy R; Nielsen, Martin; Cunha, Margarida S; Lyttle, Alexander J

DOI:
10.1093/mnras/stad1406

License:
None: All rights reserved

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Li, T, Davies, GR, Nielsen, M, Cunha, MS & Lyttle, AJ 2023, 'Systematics in asteroseismic modelling: application
of a correlated noise model for oscillation frequencies', Monthly Notices of the Royal Astronomical Society, vol.
523, no. 1, pp. 80-90. https://doi.org/10.1093/mnras/stad1406

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2023 The Author(s). Published by
Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 19. Jul. 2023

https://doi.org/10.1093/mnras/stad1406
https://doi.org/10.1093/mnras/stad1406
https://birmingham.elsevierpure.com/en/publications/691379b4-f0f5-4a4e-87ff-a124cc08d42c


MNRAS 523, 80–90 (2023) https://doi.org/10.1093/mnras/stad1406 
Advance Access publication 2023 May 12 

Systematics in asteroseismic modelling: application of a correlated noise 

model for oscillation frequencies 

Tanda Li , 1 , 2 , 3 , 4 ‹ Guy R. Davies, 3 , 4 Martin Nielsen, 3 , 4 , 5 Margarida S. Cunha 

6 

and Alexander J. Lyttle 

3 , 4 

1 Institute for Frontiers in Astronomy and Astrophysics, Beijing Normal University, Beijing 102206, China 
2 Department of Astronomy, Beijing Normal University, Beijing 100875, China 
3 School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK 

4 Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark 
5 Center for Space Science, NYUAD Institute, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates 
6 Instituto de Astrof ́ısica e Ci ̂ encias do Espa c ¸o, Universidade do Porto, CAUP, Rua das Estrelas, P-4150-762 Porto, Portugal 

Accepted 2023 May 5. Received 2023 May 4; in original form 2022 January 21 

A B S T R A C T 

The detailed modelling of stellar oscillations is a powerful approach to characterizing stars. However, poor treatment of 
systematics in theoretical models leads to misinterpretations of stars. Here, we propose a more principled statistical treatment for 
the systematics to be applied to fitting individual mode frequencies with a typical stellar model grid. We introduce a correlated 

noise model based on a Gaussian process (GP) kernel to describe the systematics given that mode frequency systematics are 
expected to be highly correlated. We show that tuning the GP kernel can reproduce general features of frequency variations for 
changing model input physics and fundamental parameters. Fits with the correlated noise model better reco v er stellar parameters 
than traditional methods that either ignore the systematics or treat them as uncorrelated noise. 

Key words: methods: statistical – stars: oscillation. 
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 I N T RO D U C T I O N  

ne-dimensional stellar models have been widely used for decades to
redict the structure, evolution, and oscillations of stars. Systematic
rrors are expected because stellar models contain assumptions and
pproximations (e.g. using the mixing-length theory to describe the
onvection) that do not perfectly reflect the actual physics in stars.
n asteroseismic mode frequencies, the most well-known systematic
rror is the so-called surface term, which appears as a frequency offset
etween observations and theoretical predictions computed with the
est-fitting structural model. The surface term is caused by the poor
odelling of near-surface layers of the star (see details in Ball 2017 ),

nd it is a major source of error in theoretical mode frequencies
 ∼5 μHz at oscillation frequency with the largest amplitude, i.e.
max , for the Sun; Christensen-Dalsgaard et al. 1996 ). Treatment
f the surface term normally follows a deterministic approach with
arametrization based on the so-called surface correction formulae
e.g. Kjeldsen, Bedding & Christensen-Dalsgaard 2008 ; Ball &
izon 2014 ; Sonoi et al. 2015 ). Previous studies for the Kepler
EGACY sample (Lund et al. 2017 ; Silva Aguirre et al. 2017 )
howed that those correction formulae can give good fits to the
requency offsets (Compton et al. 2018 ). This surface correction
s expected to be a smooth function of the mode frequency and
ome formulae also contain the mode inertia. Secondary systematic
rrors are caused by other missing physics. As an example, stellar
agnetic activity, which is not included in most stellar codes, shifts
 E-mail: litanda@bnu.edu.cn 
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ode frequencies to a noticeable de gree. F or the Sun, which is
n aged and inactive G-type star, its frequencies of low angular
egree modes ( � ≤ 3) shift up to 0.5 μHz during a solar cycle
Chaplin et al. 2007 ). Recent findings based on Kepler (Borucki
t al. 2009 ) data have shown even larger frequency shifting (up
o ∼2 μHz) in some Sun-like stars (Kiefer et al. 2017 ; Salabert
t al. 2018 ). Howe et al. ( 2017 ) note that the impact of magnetic
ctivity can be treated as a part of the surface term. Parametrizing
he time variation of the surface correction could be a way to account
or the activity-related frequency variation in solar-like oscillators.
here are also model errors that have not been well studied or
roperly treated in modelling. For instance, Ge et al. ( 2015 ) stated
hat systematic differences between observed and model frequencies
ould be expected for metal-poor stars if an incorrect α enhancement
alue is used in model computations. 

In grid-based modelling, systematic uncertainty could also under-
ine modelling solutions when the frequency resolution is compa-

able to the observed uncertainty. Here, we define the frequency
esolution as the difference between neighbouring points of the
odel grid. For a seismic model grid, neighbouring points are

hose with consecutive fundamental inputs (mass, metallicity, helium
raction, mixing-length parameter, etc.) and the same mean density.

e use the mean density to locate neighbouring points because good-
tting models constrained by oscillation modes normally converge
t a similar large separation ( �ν), which tightly correlates to the
ean density (see Li et al. 2022 ). In Fig. 1 , we demonstrate an

xample from sequential models of a model grid. Here, we take
he 1 M � model at the solar mean density, and we compare the
odel frequencies with its neighbouring grid points in terms of mass
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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Figure 1. Systematic errors and uncertainties in theoretical mode frequen- 
cies. Black filled circles are radial ( � = 0) mode frequencies of the Sun 
observed by BiSON (Howe et al. 2017 ). Open symbols represent mode 
frequencies of three theoretical models with solar mean density but different 
input masses: M = 0.99, 1.00, and 1.01 M �. Note that the models have 
the same input helium fraction ( Y = 0.26), metallicity ([Fe/H] = 0.0), and 
mixing-length parameter ( αMLT = 2.1). 
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0.99 and 1.01 M � models with the closest mean density). The mean
requency resolution is ∼1 μHz corresponding to a mass step of
.01 M �. This frequency resolution is larger than the typical observed 
ncertainty of many well-studied solar-like oscillators (Appourchaux 
t al. 2012 ; Davies et al. 2016 ; Lund et al. 2017 ). For instance, Li
t al. ( 2020a ) achieved an average uncertainty at about 0.2 μHz when
easuring mode frequencies of 36 Kepler subgiants. This is to say, 
 sparse model grid could be significantly undersampled for fitting 
o observed oscillation frequencies. 

Computing a fine model grid with a number of free model inputs
s computationally e xpensiv e. Possible solutions to this issue include 
nterpolating model frequencies based on established model grids 
ike AIMS (Asteroseismic Inference on a Massive Scale) (Rendle 
t al. 2019 ) and BASTA (The BAyesian STellar algorithm) (Aguirre 
ørsen-Koch et al. 2022 ) or using a simplex method (e.g. the ‘simplex

earch’ function in MESA ASTERO MODULE ; Paxton et al. 2015 ).These
ethods are statistically sound but not efficient enough to apply to a

arge sample of stars. A fast approach is homologously scaling mode 
requencies of a closely fitting model by a correction factor ( r ) to
pproximate a better fitting model (Kjeldsen et al. 2008 ). Scaling 
he mode frequencies by r changes the seismic large separation ( �ν)
y the same ratio and changes the mean density by a factor of r 2 .
he downside of this method is that the r -scale transformation is not
asily applied to other parameters, such as mass and age. 

Traditional fitting strategies normally treat model systematics as 
hite noise. For example, Li et al. ( 2020b ) adopted a uniform white

ystematic noise when modelling the Kepler subgiants. The scale of 
oise is determined by the average frequency difference between the 
bservation and the best-fitting model. This treatment is too simple to 
roperly describe the model systematic uncertainty and hence leads 
o poorly measured uncertainties. 

The goal of this work is developing a better statistical treatment for
ystematics in model frequencies to impro v e the reliability of detailed 
odelling based on a stellar model grid. We propose a correlated 

oise model (CNM) based on a Gaussian process (GP) kernel (also
nown as the covariance function) to describe the systematics. As a 
emonstration of the principle, we discuss the method with radial 
odes only, but it is extendable to all acoustic modes and also

ossibly to mixed modes. We introduce the underlying functions 
f the CNM and discuss the fitting procedure in Section 2 . We
hen apply the new fitting method to characterize f ak e model star
n Section 3 to examine whether fits with the CNM better reco v er
he true stellar parameters. Lastly, we close with some discussions 
bout the new fitting method and conclusions of the paper in
ection 4 . 

 M E T H O D  

.1 Model systematic function 

.1.1 Understanding model systematics 

nderstanding the systematics that affect the oscillation frequencies 
n a stellar grid is the key to finding proper functional forms with
hich to describe the model systematics. As seen in Fig. 1 , the model

ystematics can be described as a combination of two components. 
he first is the frequency-dependent offset between the best-fitting 
odel and the observed frequencies. Instead of calling it the surface

erm, we refer to it as the model systematic error ( E) to represent
he systematics caused by all improper and missing physics in a
heoretical stellar model. We use a smooth functional form, similar 
o a surface correction formulae, to model E . 

The second component, as mentioned in Section 1 , is the sys-
ematic uncertainty ( U) caused by the frequency resolution of the
odel grid. The detailed modelling uses global parameters (effec- 

ive temperature, luminosity , metallicity , etc.) and individual mode 
requencies to characterize stars. Comparing the models in Fig. 1 , we
bserve that, at a given mean density, changing the mass by a typical
ass interval in a grid shifts the mode frequencies horizontally 

y an amount that increases smoothly with frequency. Changing 
ne of the other model inputs like metallicity, helium fraction, and
ixing-length parameter shifts mode frequencies in a similar way. 
here is also a secondary term to be considered in the systematic
ncertainty related to the signature of rapid structural variations in 
he oscillation frequencies (known as the helium ‘glitch’ signature). 
he structural variation can be seen in the first adiabatic index ( � 1 ).
ough ( 1990 ) and Houdek & Gough ( 2007 ) assumed that the helium
litch signature arises from the second helium ionization zone. Later 
tudies indicate that this signature is from the � 1 peak between
he first and second helium ionization zones (see Houdayer et al.
021 for details on modelling of the ionization region). The helium
litch strongly correlates with the helium fraction in the conv ectiv e
nvelope. In Fig. 2 , we illustrate the signature of the helium glitches
xtracted from theoretical models with approximately the solar 
ean density. The glitch signatures follow the sinusoidal function 
ith decaying amplitudes and the signature parameters (amplitude, 
eriod, and phase) change with the fundamental inputs (Houdek & 

ough 2007 ; Verma et al. 2019 ). For the models presented here,
he average frequency shift is at a level of ∼0.1 μHz, which is
omparable to or larger than the observ ed frequenc y uncertainties on
ome Kepler stars (e.g. Li et al. 2020a ), thus should not be ignored.
ence, the systematic uncertainty can be described with a two-term 

unctional form. The primary term ( U 1 ) is a very smooth function of
requency and the secondary term ( U 2 ) is a fast-varying function of
requency. 

As a result, we describe the model systematics as the combination
f the systematic errors ( E) and two systematic uncertainty terms ( U 1 

nd U 2 ). 
MNRAS 523, 80–90 (2023) 
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M

Figure 2. The helium glitch features extracted with the tool ASTERION ( https: 
// github.com/alexlyttle/ asterion ) from theoretical radial mode frequencies. 
1st: models with different mass ( M = 0.99, 1.00, and 1.01 M �), but same 
metallicity ([Fe/H] = 0.0), helium fraction ( Y = 0.26), and mixing-length 
parameters ( αMLT = 1.9); 2nd: models with same mass ( M = 1.00 M �), 
metallicity ([Fe/H] = 0.0), and mixing-length parameters ( αMLT = 1.9) but 
different input helium fractions ( Y = 0.28, 0.26, and 0.24); 3rd: models 
with same mass ( M = 1.00 M �), helium fraction( Y = 0.26), and mixing- 
length parameters ( αMLT = 1.9) but different metallicity ([Fe/H] = −0.1, 
0.0, + 0.1); 4th: models with same mass ( M = 1.00 M �), metallicity 
([Fe/H] = 0.0), and helium fraction ( Y = 0.26) but different mixing-length 
parameters ( αMLT = 1.9, 2.1, and 2.3). All models have approximate solar 
mean density. 
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on the SE kernel in equation 1 ) on the ́Echelle diagram. Black dots represent a 
set of mode frequencies of a stellar model computed with MESA (Paxton et al. 
2011 ) and GYRE (Townsend & Teitler 2013 ) codes. Red dots in the left-hand 
panel and blue dots in the right-hand panel represent generated noise with the 
WNM and the correlated models plus the computed mode frequency. 
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.1.2 The application of a GP kernel 

s demonstrated earlier, proper descriptions of systematic errors and
ncertainties are smooth functions of frequency. This is expected
ecause mode frequencies are highly correlated following the so-
alled asymptotic relation. Thus, a white noise model (WNM) for
he systematic noise term is inherently not a good model. Here, we
uggest a noise model with a smooth function form which is able to
onsider the correlation between mode frequencies, and we refer to
t as CNM. 

The GP kernel, which is used to generate a covariance matrix
or a multi v ariate normal distribution, is particularly suitable for
uilding up the CNM. Rasmussen & Williams ( 2006 ) consider a
P in a functional form domain whereby the conditional GP acts to
NRAS 523, 80–90 (2023) 
arginalize o v er all possible functional forms weighted by the prior
i.e. the kernel) and the data. Here, we chose a squared exponential
SE) kernel as it follows a smooth functional form and is able to
onsider the correlation between oscillation frequencies. The SE
ernel is described by the covariance matrix 

( ν, ν ′ ) = σ 2 exp 

(
− ( ν − ν ′ ) 2 

2 l 2 

)
. (1) 

he kernel k ( ν, ν ′ ) models the joint variability of the GP random
ariables. It returns the modelled covariance between each pair
f frequencies ν and ν ′ . When using the kernel to represent the
ystematic uncertainties, ν are the computed mode frequencies in
he model grid and ν ′ are the predicted frequencies based on ν.
here are two free parameters in the function: the length-scale l
nd the noise variance σ . The length-scale describes how smooth a
enerated function is (length of the ‘wiggles’), and the noise variance
pecifies the average distance of the function away from its mean.
uning these two parameters allows us to generate functional noise
orms with different smoothness and varying ranges. In sampling
rocess, the kernel randomly generates frequency noise ( ν − ν ′ ) for
 gi ven ν follo wing the multi v ariate normal distribution specified by
he length-scale and the noise variance. 

In Fig. 3 , we demonstrate some randomly generated noise realiza-
ions using equation ( 1 ) based on a set of computed model frequencies
 ν). We use a length-scale of 5 �ν and a variance of 1.0 μHz. As
een, the predicted frequency sets ( ν ′ ) change in a highly correlated
ay. We also show a set of random samples from the WNM for

omparison. The WNM follows a Gaussian distribution and has the
ame v ariance v alue ( σ = 1.0 μHz). The predicted frequencies based
n the WNM include spiky features, which obviously do not well
eflect the true curvature of radial mode frequencies. We suggest here
hat a CNM based on the SE kernel is the better representation for

odel systematics because it is more consistent with our prior belief
n the nature of the oscillation frequencies. 

art/stad1406_f2.eps
https://github.com/alexlyttle/asterion
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.2 Determining the systematic function with the SE kernel 

ow, we determine the functional form of CNM. First, we describe 
he systematic error kernel as 

 E = σ 2 
E exp 

(
− ( ν + μE − ν ′ ) 2 

2 l 2 E 

)
, (2) 

here μE is the mean function, σE and l E are the error kernel 
ariance and the error kernel length-scale, respectively . Secondly , 
he systematic uncertainty function contains two terms ( U 1 and U 2 )
hich represent frequency shifts between model grid points. We 

herefore use two kernels to describe them, written as 

 U, 1 + k U, 2 = σ 2 
U, 1 exp 

( 

− ( ν − ν ′ ) 2 

2 l 2 U, 1 

) 

+ σ 2 
U, 2 exp 

( 

− ( ν − ν ′ ) 2 

2 l 2 U, 2 

) 

. (3) 

ere, we refer to tw o k ernels ( k U, 1 and k U, 2 ) as the primary
ncertainty kernel and the secondary uncertainty kernel, respectively, 
nd in which σU and l U are the uncertainty kernel variance and the
ncertainty kernel length-scale, respectively. 
Finally, we write the full expression for our CNM as 

 = k E + k U, 1 + k U, 2 . (4) 

he systematic function considers the systematic errors caused by 
mproper physics in stellar models and the systematic uncertainty 
ue to the model grid steps. To apply the function to stellar mode
requency fits, we need to choose appropriate kernel parameters ( μE , 
 E , σE , l U, 1 , σU, 1 , l U, 2 , and σU, 2 ). In the following section, we will
emonstrate how these terms are determined in an actual fitting 
rocess. 

.3 Determining kernel parameters 

e demonstrate the determination of the kernel parameters of the 
NM in the case of the Sun-as-a-star. We use the same stellar model
rid adopted by Lyttle et al. ( 2021 ). The grid co v ers parameter ranges
steps) of 0.8–1.2 (0.01) M � for mass ( M ), −0.5–+ 0.5 (0.1) for
etallicity ( M/H ), 0.24–0.32 (0.02) for initial helium mass fraction 

 Y ), and 1.5–2.5 (0.2) for the mixing-length parameter ( αMLT ).
bserved frequencies of the Sun are taken from the BiSON network 

Howe et al. 2017 ). 

.3.1 Free parameters in the systematic error kernel 

ere, we discuss the determination of the mean function ( μE ),
rror kernel length-scale ( l E ), and error kernel variance ( σE ). The
ystematic error kernel is normally determined from frequency dif- 
erences between observations and the best-fitting model. Ho we ver, 
he best-fitting model is unknown to us a priori. Instead, we use
pecific knowledge of model errors of similar stars to characterize 
he systematic error and determine three adjusted parameters. In what 
ollows, we justify our choices but note that the method itself could
ncorporate alternative choices. 

Previous studies of the surface correction on stars similar to the Sun 
rovide some useful references for model errors of the Sun. Compton 
t al. ( 2018 ) estimated the surface terms of 66 Kepler main-sequence
tars. For stars within a parameter range of T eff = 5777 ± 250 K
nd log g = 4.44 ± 0.5 dex, the relative surface corrections at νmax 

 δν( νmax )) vary from −0.0015 νmax to −0.0045 νmax . We use this prior
nformation in the form of a weight w νmax given by a super Gaussian
unction with the exponent raised to a power of 10 (flat-top Gaussian
unction) 

 νmax = exp 

⎛ 

⎝ −
( 

( δν( νmax ) − μνmax ) 
2 

2 σ 2 
νmax 

) 10 
⎞ 

⎠ . (5) 

ere, μνmax and σνmax are −0.003 νmax and 0.0015 νmax , respectively. 
his likelihood function returns a weight that is flat when δν( νmax )

s in the μνmax ± σνmax range, and quickly drops towards zero at 
νmax ± 1 . 5 σνmax . Moreo v er, previous studies (Ball & Gizon 2014 ;
ompton et al. 2018 ; Li et al. 2020b ) have also inferred that the
odel frequency errors at the low-frequency range, below ∼0.7 νmax , 

re not as significant as those in high-frequency range. In Sun-like
tars, the low-frequency range errors are on average approximately 
ero with a small amount of 0.001 νmax spread. This can be used as
nother constraint and we describe it as a Gaussian function as 

 low −ν = exp 

⎛ 

⎝ −
˜ δν( νobs ) 

2 

2 σ 2 
low −ν

⎞ 

⎠ , ( for νobs ≤ 0 . 7 νmax ) , (6) 

here ˜ δν( νobs ) represents the median of frequency offsets for given 
bserved frequencies, σ low- ν is adjusted and defines for how much 
he ˜ δν( ν) deviating from zero is sensible. According to earlier 
tudies (Ball & Gizon 2014 ; Compton et al. 2018 ), we adopt σ low- ν

 0.001 νmax . 
Now, we demonstrate how these two functions are used to 

haracterize the model errors of the Sun. First, we compare observed
nd model frequencies to calculate frequency differences. We then 
se equations ( 5 ) and ( 6 ) to obtain a joint weight ( w low- ν ·w νmax )
or each model. As a simple example, we use stellar models on
n 1 M � evolutionary track to demonstrate this estimation in the
eft-hand panel of Fig. 4 . When the joint weight of each model is
btained, we find a couple of potential good-fitting models (with 
eight value larger than 0.01) on this track and plot their frequency
ifferences as a function of the frequency. The weight distribution 
ndicates the model error is about −5 μHz at 3000 μHz and goes
own to about −10 μHz at 4000 μHz. Now, we could fit a cubic
olynomial function to all frequency differences in Fig. 4 against 
he frequency weighted by the joint weight to estimate the mean
f frequency offsets (the solid line). Moreover, we calculate the 
eighted standard deviations of frequency differences (as illustrated 
y the grey shade). The fitted polynomial function represents the 
ean estimate of systematic error in these theoretical models, and 

he standard deviation infer the range for it to vary. We thus use
hem as the mean function and noise variance in the systematic
rror kernel. In our CNM, the length-scale determines the degree of
orrelation between mode frequency noise. By inspecting the surface 
orrection results obtained on the Kepler LEGACY sample (Compton 
t al. 2018 ), we notice that the frequency offsets between model and
bserv ations mostly follo w slo wly v arying smooth functions (highly
orrelated). This is to say that the error kernel length-scale ought
o be much larger than the large separation. We test a selection
f length-scale values and compare the kernel predictions with the 
urface correction results. We find a suitable length-scale of 5 �ν

ecause the kernel with this length-scale value well reproduces both 
he very smooth surface terms expected for stars with approximately 
ne solar mass and the slightly curved ones, expected for the more
assive F-type stars (see fig. 8 of Compton et al. 2018 ). Using

he mean function, variance, and length-scale obtained earlier, we 
llustrate some random draws from the systematic error kernel in the
ight-hand panel of Fig. 4 . 
MNRAS 523, 80–90 (2023) 
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Figure 4. Left: The determination of mean function ( μE ) and variation ( σE ) of the systematic error kernel ( E) while fitting to the Sun-as-a-star. Dots are 
frequency differences between observed solar data (from BiSON ) and theoretical models. These models are from the same evolutionary track with M = 1.00 M �, 
Y = 0.26, [Fe/H] = 0.0, and αMLT = 2.1. The colour code indicates the joint weight determined with the two likelihood functions (equations 5 and 6 ). Note 
that we use all models on the track to determine the mean function and variation but only plot eight models with a joint weight larger than 0.01. The solid 
line represents the polynomial function that fits the frequency differences (weighted by the joint weight), and we use this as the mean function. The grey shade 
indicates the weighted standard deviation which is adopted as the v ariance. Right: Fi v e random dra ws from the systematic error kernel. The mean function and 
variance are determined with the method demonstrated in the left-hand panel, and the error kernel length-scale is 5 �ν. 
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.3.2 Free parameters in the uncertainty kernels 

ow, we determine the length-scales and variances of the two
ncertainty kernels. The two length-scales and variances are different
ecause the primary kernel describes the general frequency change
a very smooth function of frequency) and the secondary kernel
orresponds to the helium glitch signatures (a fast-varying function
f frequency). The uncertainty kernels represent the systematic
ncertainty at a grid point and their free parameters depend on
he local frequency changes between the point and its neighbouring
oints. Thus, free parameters in the uncertainty kernels vary for
ifferent grid points. 
Here, we use a simple method to determine free parameters for

he grid point at M = 1 M �, [Fe/H] = 0.0, Y init = 0.26, αMLT 

 2.1, and ρ = ρ�. A model grid al w ays contains multiple input
imensions. For the grid in this work, the independent inputs are
ass, initial metallicity, initial helium abundance, and initial mixing-

ength parameters. We therefore inspect the frequency changes for
ach fundamental input (see details in Fig. A1 ). We find that the
rimary uncertainty kernel needs a large length-scale to make it
ct as a very smooth function. We test different length-scale from
0 �ν to 30 �ν and adopt l U, 1 = 20 �ν because it best reco v ers the
eneral shape of frequency changes in Fig. A1 . On the other hand,
e use a small length-scale for the secondary uncertainty kernel to
atch the quick variation of the glitch signature. By inspecting the

econd-order variations in Fig. A1 , we notice that the lengths of
he ‘wiggles’ are mostly between 2 and 3 radial orders. The choice
f length-scale needs to be in a similar range to reproduce the fast
ariations. We hence test different length-scale values from 1 �ν to
 �ν and find the kernel with l U, 2 = 2 �ν best reco v ers the test case.
onsidering the frequency resolution for all input dimensions, we
nd an average varying range is ∼0.75 μHz at 0.5 νmax , ∼1.5 μHz
t νmax , and ∼2.0 μHz at 1.5 νmax . The variance is hence frequency-
NRAS 523, 80–90 (2023) 
ependent and we use σU, 1 = 1.5 νobs / νmax . The secondary kernel
ariance is also frequency-dependent given that the signature of
he helium glitch is a damped sine wave. As shown in Fig. 2 , the
econdary uncertainty is up to ∼0.4 μHz at 0.5 νmax and gradually
educes to ∼0 at 1.5 νmax . We therefore set-up the secondary variance
s σU, 2 = 0.1( νmax / νobs ) 2 . Note that the method of measuring
requency differences and estimating the kernel variation is fairly
ough. First, the kernel variation is not uniform through a model grid.
econdly, we measure frequency changes in each input dimension

ndependently, but the four fundamental inputs are highly degenerate.
he grid resolution of oscillation frequency and the free parameters
f the uncertainty kernels should be solved as multiple dimesions
roblems. We leave these in future studies. 
In Fig. 5 , we use the two uncertainty kernels to generate some

requency noise as a function of frequency. As seen, the primary
ncertainty kernel generates very smooth and highly correlated noise,
nd what the secondary uncertainty kernel provides is similar to the
amped sine wave. The combination of the two kernels gives rea-
onable predictions of frequency noise between stellar model grids. 

.4 Likelihood function 

n this section, we discuss the likelihood function that works for the
NM fitting. We start with the likelihood function used in traditional
ethods. When no systematics are considered and errors on the

bserved frequencies are assumed to be uncorrelated, it is normally
ritten as 

 = exp 

( 

− ( νobs − νmod + δνsc ) 2 

2 σ 2 
νobs 

) 

, (7) 

here the subscripts ‘obs’ and ‘mod’ stand for the observed and the
odel quantities, respectively. The term δνsc represents the surface

art/stad1406_f4.eps
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Figure 5. Generated frequency noise using the primary uncertainty kernel 
(top), the secondary uncertainty kernel (middle), and the combination of 
tw o k ernels (bottom). The primary k ernel has a length-scale of 20 �ν and a 
frequency-dependent variance of 1.5 νobs / νmax . The secondary kernel, which 
describes the change in glitch signature, has a length-scale of 2 �ν and a 
variance of 0.1( νmax / νobs ) 2 . In each panel, we demonstrate 10 randomly 
generated sets of frequency noise, i.e. the ( ν – ν′ ) in the systematic uncertainty 
kernel. Note that we use observed solar frequencies as ν when generating the 
noise in this plot. 
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orrection to model frequencies. When we consider model systematic 
ncertainties and treat them as white noises, the likelihood function 
ecomes 

 WNM 

= exp 

( 

− ( νobs − νmod + δνsc ) 2 

2( σ 2 
νobs 

+ σ 2 
νsys 

) 

) 

, (8) 

here σνsys represents the white systematic noise. 
In Figs 4 and 5 , we generate ν ′ for justifying our choices of kernel

arameters. In the fitting process, generating ν ′ with some samplers 
e.g. Monte Carlo Markov Chain) and fitting ν ′ to observations is 
pplicable but computationally e xpensiv e. In the fitting procedure, 
e could simply use likelihood functions instead of sampling 
′ . Because a GP kernel is essentially a covariance matrix for a
ulti v ariate normal distribution, whose probability function follows 
 multi v ariate normal distribution. Thus, we can describe CNM as a
ulti v ariate normal distribution in the fits and write the likelihood

unction as 

 CNM , N ∝ exp 
(− 1 

2 ( νmod + μE − νobs ) T 
∑ −1 ( νmod + μE − νobs ) 

)
. 

(9)

he subscript ‘N’ stands for the normal distribution, and the 
∑

epresents the covariance matrix based on the SE kernel ∑ 

= k com 

( νmod , νmod ) + I · σ 2 
νobs 

. (10) 
he term k com 

( νmod , νmod ) is the combination of three kernels which
escribe correlated noise. The term I · σ 2 

νobs 
( I is the identity matrix)

escribes the observed uncertainty of mode frequencies which should 
e white noise. It should be noted that the k com 

( νmod , νmod ) term does
ot contain μE in the systematic error kernel as we already consider
E , when comparing model and observed frequencies as shown in 
quation ( 9 ). 

Moreo v er, we could consider in addition some potential errors
hich are unknown or unpredictable. In some cases, a few per cent of
bserved mode frequencies can be misreported or poorly measured. 
ome noisy spikes in the oscillation power spectrum could be 
isclassified as modes; mixed modes close to the � = 0 ridge could

e misidentified as radial modes; and frequency uncertainties could 
e underestimated for unresolved modes. Due to these additional 
rrors, the probability distribution should contain a small fraction of 
exceptions’. The t distribution is a good option for dealing with these
ases. The probability density function of the t distribution is similar
o the normal distrib ution b ut has long and fat tails at both sides.
he probability in the tail region represents the chance of a mode

requency being misreported. The likelihood function following the 
ulti v ariate t distribution is written as 

 CNM , t ∝ 

(
1 + 

1 

d 
( νmod − νobs ) 

T 
∑ −1 ( νmod − νobs ) 

)−( d+ p) / 2 

. 

(11) 

ere, the subscript ‘ t ’ represents the t distribution, p is the dimension
f the vector of frequencies, and d is the number of degrees of freedom
hat determines the possibility of incorrect measurement. The degrees 
f freedom d = 2 corresponds to a ∼10 per cent probability in the tail
egions (outside 3 times half-width at half-maximum) and we adopt 
his value in the following analysis. 

 APPLI CATI ON  IN  ASTERO SEISMIC  FITTING  

.1 Fitting a fake model star 

o test whether this new fitting method better reco v ers the truths
f stellar parameters, we fit to a f ak e model star that has similar
urface properties to the Sun. The fake star is computed with same
nput physics but with off-grid input fundamental parameters, which 
re M = 1.005 M �, Y = 0.256, and αMLT = 1.99. The true age,
adius, and mean density are τ = 3.99 Gyr, R = 1.007 R �, and

= 0.984 ρ�, respectively. Classical ‘observed’ quantities are T eff 

 5771 K, log g = 4.43 dex, and [Fe/H] = −0.05 dex. We adopt
bserved uncertainties of ±50 K for T eff , ±0.1 dex for log g , and
0.1 dex for [Fe/H]. Radial mode frequencies for n = 12–30 are

elected as seismic constraints. The global seismic parameters are 
max = 3058 μHz (calculated with the scaling relation given by 
jeldsen & Bedding 1995 ) and �ν = 134.4 μHz (from the linear
tting of radial mode frequencies). A uniform observed uncertainty 
f σνobs = 0 . 5 μHz for mode frequencies is applied. Regarding the
ree parameters of the kernels, we use fixed parameters determined 
n Sections 2.3.2 and 2.3.1 in all following tests. 

Because the star is a f ak e model star, no model error is included.
he systematic function only contains the uncertainty term. We con- 
ider three cases for comparison. We do not consider the systematics
or the first case and use equation ( 7 ) as the likelihood function. The
econd case includes the white systematic noise and equation ( 8 ) as
he likelihood function. In the third case, we apply the CNM and use
he multi v ariate normal distribution (equation 9 ) to determine the
ikelihood function. Note that we use the same maximum likelihood 
stimation (MLE) to fit classical observed frequencies in all these 
MNRAS 523, 80–90 (2023) 
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M

Figure 6. Probability distributions of five star parameters of the f ak e star on the CORNER (F oreman-Macke y 2016 ) plot. Results include three cases that are 
fits without any model systematics (top left), with white systematic noise (top right), with a CNM (bottom). The input values of the five stellar parameters are 
indicated by blue solid lines. 
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hree cases. The posterior distribution is the joint probability of

ikelihoods from the classical and the seismic fits. 
We start with the first and the second cases that either ignore
odel systematics or treat them as white noise. Frequency-dependent

ystematic uncertainties as σ sys = 1.5 νobs / νmax are used in the
econd case. Fig. 6 shows posterior distributions of five fundamental
arameters. Posterior distributions for the first case are spiky be-
ause the model grid is significantly undersampled, leading to poor
ccuracy and precision. When the white systematic uncertainty is
onsidered, we obtain continuous posterior distributions and more
eliable estimates of stellar parameters. We then apply the CNM as
escribed in Section 2 in the fits and illustrate the fitting results at the
NRAS 523, 80–90 (2023) 
ottom in Fig. 6 . Comparing with abo v e traditional methods, we find
ignificant impro v ements in estimated precisions for mass, radius,
nd age because CNM is a more principled statistical treatment for
he systematics. 

.2 Fitting a realistic fake star 

s a further test of our method, we make the abo v e f ak e star more
ealistic by adding the surface term and some random observed noise
o oscillation frequencies. To be specific, we refer to it as the ‘realistic
 ak e star’. We add the solar surface term using the correction formula
iven by Kjeldsen et al. ( 2008 ) with the two adjusted parameters

art/stad1406_f6.eps
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Figure 7. Fitting procedure for the ‘realistic f ak e star’. Top left: ‘observed’ radial mode frequencies (blue dots) generated with model frequencies (black dots) 
plus the solar surface term and some random noises. Top right: the determination of mean function of model errors ( μ in equation 4 ). Dots indicate frequency 
offsets between models and observations, and colour code represent the joint probability of two priors ( L low −ν · L νmax ) of each model. Black solid line and 
grey shade are weighted median and weighted standard deviation of frequency of fsets, respecti vely. Black dashed line stands for true model errors. Bottom left: 
posterior distributions of five stellar parameters based on the multi v ariate normal distribution (equation 9 ) on the CORNER plot. Truths are presented by blue 
lines. Bottom right: same as the left, but for the multi v ariate t distribution (equation 9 ) case. 
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s a = −4.73 and b = 4.90. Some random noise following the
aussian distribution ( σ obs = 0.5 μHz) is added to the frequencies. 
e generate several sets of ‘observed’ frequencies and choose the 

ne with a few frequencies obviously deviating from the asymptotic 
elation (as shown in the top-left panel in Fig. 7 ). This is to mimic the
ase of poorly measured modes. All the observed quantities are the 
ame except �ν because adding the surface term changes its value. 
e fit the new mode frequencies with a linear function and obtain

n observed �ν of 133.4 μHz. 
The full systematic function is applied in the fitting. We first fit to

hree classical observed quantities ( T eff , log g , and [Fe/H]) using the
LE method and select models with likelihood greater than 10 −4 . We
hen determine the mean function ( μ) and the variance ( σE ) for the
rror kernel ( K E ) with the selected models. As illustrated in the top-
ight panel in Fig. 7 , we calculate the prior likelihoods with equations
 5 ) and ( 6 ) and calculate the weighted median and the weighted
tandard deviation for observed frequencies. The uncertainty kernel 
s defined in the same way as in the fits to the f ak e model
tar. 

We fit models to the data and calculate the likelihood with the
ulti v ariate normal distribution (equation 9 ) as well as the multi-

ariate t distribution (equation 11 ). We show posterior distributions 
MNRAS 523, 80–90 (2023) 
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or the two cases at the bottom of Fig. 7 . Estimated mass, radius,
nd age for both cases are consistent with the input parameters.
omparing results with two different likelihood functions, we find
etter age precision from the fits with multi v ariate t distribution but
o obvious improvements for estimated mass and radius. From the
oint distributions, we find larger age spreads against the helium
raction and the mixing-length parameter for the Gaussian process
ase. This is because those poorly measured modes form some
mall-scale curvatures that affect the glitch signature. This is to
ay, those bad modes weaken the indications of mode frequen-
ies to the helium abundance. The normal distribution likelihood
unction does not consider any exceptions in oscillation frequencies
nd hence treats those mode shifts as helium glitches, leading to
arger spreading in the posterior of the helium fraction. On the
ther hand, the likelihood function with t distribution can properly
nterpret them as potential errors and hence a v oid o v ere xplaining
he data. 

 DISCUSSION  A N D  C O N C L U S I O N S  

e propose a CNM based on a GP kernel (covariance function) to
etter describe model systematics in stellar models constrained by
steroseismic mode frequencies. The work is moti v ated by poor
reatments of model systematics in theoretical mode frequencies
hat undermine modelling solutions. The model systematics include
rrors caused by improper physics and uncertainties due to the
rid resolution. We use a GP kernel because it has infinitely many
eri v ati ves in its prior to represent all possible frequency variations
etween the points of a model grid. We show that this CNM generates
ode frequencies that better match our expectations than the WNM

Fig. 3 ). In practice, we describe the systematics as a mean function
f frequency offsets and several kernels. We manage to use these
ernels to reproduce frequency variations at different scales by
uning the two free parameters, i.e. kernel length-scale and kernel
ariance. We apply the method to fitting a simulated set of model
requencies. In this work, fits with this new CNM outperform the
ther two traditional methods that either ignore the systematics or
reat them as white noises. We also suggest using the t -distribution
ikelihood function in the fitting to cope with potentially misreported

ode frequencies. Our testing shows that the t -distribution likelihood
unction better reco v ers the properties of the simulated star compared
ith the normal distribution. 
The new fitting approach includes a better description for the
odel systematics and hence impro v es the reliability of modelling

olutions. This is a no v el alternativ e to account for the effect of
he limited resolution of the grid. It mitigates the issues in seismic

odelling, as found by Cunha et al. ( 2021 ), that when the errors
n the frequencies are not inflated, the uncertainties on the inferred
tellar properties are often underestimated. We also treat the surface
erm (model errors) as a mean function plus a covariance function
nstead of parametrizing a specific correction formula. The method
an be applied to any established model grid. It is fast and statistically
ound in the grid-based framework and hence suitable for modelling
 large sample of stars. The method could be useful for the PLATO
tellar analysis pipeline (Gent et al. 2021 ), which is developed for
ast determinations of stellar parameters in the core programme of
he mission. This work only demonstrates the application to radial

odes, but the method is extendable to all acoustic modes and also
ossibly to mixed modes. 
There are also some limitations. Although the CNM is a reasonable

rediction of model systematics, fitting with it is still not as good
s interpolating the grid (assuming the error on interpolation is
NRAS 523, 80–90 (2023) 
ignificantly smaller than the frequency errors). The fitting approach
s therefore not the best option when precision is essential. The
econd limitation is in the determination of the mean function
ppearing in the systematic error kernel. It relies on previous studies
n similar stars to give reliable priors. Here, we obtain a good mean
unction for the example star, because its parameters fit in many
ell-studied Sun-like stars. To apply this method to other types of

tars, a well-studied star sample that co v ers wide parameter ranges
s required for estimating the mean function. Moreo v er, we note that
he functional form of kernels can change for different input physics
r free parameters of model grids. Analysing model systematics is
equired before applying the method to model grids. In future work,
e will introduce additional machine learning tools to learn the model

ystematics across the HR diagram to determine the functional form
n a robust way. This will make the method applicable for many stars
ithout customizing the GP kernels. 
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PPENDI X  A :  

1 Inspecting frequency differences between the grid points 

here are two free parameters in the RBF kernel (the squared
xponential kernel), i.e. the length-scale and the variance. Proper 
hoices of kernel parameters are the key to the noise model. We
nspect the frequency change between consecutive grid points to 
etermine the kernel parameters. We present frequency differences 
etween models with approximately the solar mean density in Fig. 
1 . As shown, frequency differences can be described as a smooth

unction of the frequency plus a damped sine function (the signature
f the helium glitch). The systematic uncertainty hence contains 
w o k ernels. The primary k ernel should have a large length-scale
nd a frequency-dependent variance for each input dimension . The 
econdary kernel represents the signature of the helium glitch. 
t hence has a relatively small length-scale and some variances 
ecreasing with the frequency. 
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Figure A1. Mode frequency changes between consecutive grid points in four input dimensions . All presented models have approximately solar mean density. 
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